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Abstract

We analyze a principal–agent problem with moral hazard where a principal searches for an opportunity 
of uncertain return, and hires an agent to evaluate available options. The agent’s effort affects the informa-
tiveness of a signal about an option’s return. Based on the information provided by the agent, the principal 
decides whether to exercise the option at hand. We derive properties of the optimal contract in both static 
and dynamic versions of the problem. We show that there are intermediate values of the prior probability 
that the option is of high quality at which positive effort cannot be sustained. We also show that if the prior 
is below a threshold, then the agent is rewarded for delivering ‘bad news’ about the option’s quality. We 
derive distortions (relative to the first best) on the implemented effort level and optimal stopping decision. 
For some parameter values, it is optimal for the principal to commit to an ex-post suboptimal stochastic 
decision to exercise an option.
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1. Introduction

Many situations of economic interest feature a client (principal) who searches for an oppor-
tunity/option whose return is uncertain, and hires an expert (agent) to evaluate potential options. 
The agent’s effort, which he chooses privately, affects the quality of information he receives 
about the options. Based on the information the agent provides, the principal compensates him 
and decides whether to exercise an option or continue the search.

Interactions of this sort abound in real-world applications. For instance, consider an individual 
seeking to purchase a house, who hires a home inspector to provide her with information about 
houses that become available. Or take an uninformed investor who hires an expert to evaluate 
potential investment opportunities. Although other features may be present in these applications, 
information acquisition certainly plays an important role.

The purpose of this paper is to analyze how to structure incentives in these environments, 
where the quality of information is endogenous and hidden, and to shed light on the main distor-
tions that this moral-hazard problem impinges on information acquisition and on the principal’s 
decision to exercise an option.

To focus on the main trade-offs involved in this problem, we build a tractable principal–agent 
model with risk-neutral parties, moral hazard, and limited liability. The agent’s role is to acquire 
information about the unknown quality of an available opportunity, which can be high or low. 
Information consists of a binary signal whose informativeness depends on the agent’s effort. We 
assume that the signal realization is publicly observable, and thus the agent cannot misreport 
it. The principal conditions her decision to accept or reject an opportunity on the information 
acquired by the agent. We also assume that contracts can only be conditioned on the signal and 
the principal’s decision to exercise an option. That is, although the quality of the option may 
potentially be observable ex post (after the option is exercised), it is not contractible.

The above assumptions are not far-fetched, for instance, in the context of the home-inspector 
application. Regarding quality being non-contractible, that a house is of bad quality might be re-
vealed several years after the purchase, making it hard to incorporate that event into the contract. 
For example, a house may have a problem with the roof, which might not be detected during 
an inspection and will cause leakages, but only during a very long and heavy rain that seldom 
occurs. As for the signal being publicly observable, many tests—as well as their results—that 
home inspectors perform on a house are verifiable and are difficult to misreport. Also, even when 
misreporting is possible, it does not seem to be a particular concern in this business (at least if the 
inspector is independently hired by the potential home buyer as opposed to being recommended 
by the real-estate agent). At the same time, overlooking an important problem due to a careless 
inspection is certainly a big issue, and we focus on it in this paper.

We first derive the optimal contract in the static case, with only one option to evaluate. Then 
we tackle the dynamic case, where there is an option in every period that is evaluated before the 
principal decides to stop the search. As a benchmark, and also to highlight the drastic effect that 
moral hazard and information acquisition have on the optimal contract, we show that without 
informational problems the solution is trivial. Indeed, in the first-best case, depending on the 
prior belief about the option quality, the principal either does not hire the agent and always/never 
buys, or she implements a constant level of effort (signal precision) over time and exercises the 
first option whose signal realization is high.

Results are radically different under moral hazard. We show that there is a threshold value of 
the prior belief that an option is of high quality such that the agent is rewarded for a high signal 
realization if and only if the prior is above this threshold. This cut-off value is higher when 
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the relative effect of effort on the signal distribution in the low- vs. high-quality state is higher. 
Moreover, at the threshold, it is infinitely costly to implement any positive effort, and hence the 
principal implements zero effort in a neighborhood of the threshold. Thus, the principal does not 
use the agent’s services, even though information might be very valuable.

When the prior belief is below the threshold, the agent is rewarded for delivering bad news 
about the option’s quality. We call this feature rewarding for bad news.1 We argue that it arises 
naturally when the agent’s effort generates information about a characteristic that is payoff-
relevant for the principal.

In the static setting, rewarding for bad news means that the agent gets paid when the principal 
chooses not to exercise an option. Interestingly, this last feature disappears in the dynamic case, 
because the principal prefers to postpone payments until she stops the search. Thus, the agent 
only gets paid at the end, that is, when the principal exercises an option. The size of that payment 
depends on the history observed up to that point. Hence, rewarding for bad (good) news in the 
dynamic case means that the agent’s expected future payments increase (decrease) upon a low 
signal realization.

The implemented effort and the principal’s decision to exercise an option are both distorted 
under moral hazard compared to the first best. In the static case, effort is distorted downwards, 
so the decision to exercise an option is based on less precise information than in the first-best 
case. Additional distortions arise in the dynamic case. For instance, in the first-best case effort is 
constant over time, while in the second-best case it can fluctuate. The reason is that the agent’s 
expected payments optimally change over time depending on the history, which in turn makes 
the implemented effort vary over time.

Another distortion in the dynamic case is that, unlike in the first best, the principal’s decision 
to exercise an option might involve randomization. The principal might find it optimal to commit 
to a lottery over exercising an option and not exercising it, even though ex post she is not in-
different between the two alternatives. Specifically, we show that for some parameter values the 
principal will not exercise an option with some probability, even though she receives favorable 
news about it from the agent, and exercising it would be ex-post profitable. This occurs because 
of the asymmetry embedded in the model, namely, that the search stops if the principal exercises 
an option and it continues if she does not. Finally, we also provide a fairly complete description 
of the optimal contract when the principal can only commit to a deterministic purchase decision.

RELATED LITERATURE. The paper is related to the large literature on repeated moral hazard 
(e.g., Rogerson, 1985b, Spear and Srivastava, 1987, and Sannikov, 2008). What distinguishes our 
model is that effort affects the informativeness of a signal about the option quality and not the 
distribution of output, and that the principal uses information provided by the agent to make a 
decision. Our paper is also related to Toxvaerd (2006), Mason and Valimaki (2015), and Lewis 
and Ottaviani (2008). In these papers, effort affects the probability of completing a project, or the 
arrival of opportunities that lead the agent to stop the search. That is, the principal delegates the 
search to the agent. In our model, the principal conducts the search, and delegates the acquisition 
of information to the agent.

1 In our model, the signal provides information about both the effort chosen by the agent and the quality of the option. 
As a signal of effort, a low realization can be good or bad news depending on the prior. But as a signal of quality, 
a low realization is always bad news (the option’s expected return is lower). It is in this sense that bad news should 
be interpreted. Moreover, the principal always receives a lower payoff if a low signal is realized (even after paying the 
agent), which reinforces the bad news interpretation.
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There is a vast literature on decisions with information acquisition—see, e.g., Chade and 
Schlee (2002) and the references cited therein—where, before making a decision, an individual 
acquires a signal, whose cost is exogenous and is increasing in the signal’s informativeness. In 
our model, cost is endogenous, determined by the moral hazard problem.

Among papers that analyze private information acquisition, the following are the most re-
lated ones. Szalay (2009) and Krahmer and Strausz (2011) study static procurement problems 
with adverse selection where the agent privately acquires information. Both papers show that 
information acquisition leads to distortions in effort and production. Unlike them, we derive the 
rewarding-for-bad-news property and, more importantly, provide a detailed analysis of the dy-
namic case. Also, the last section of Inderst and Ottaviani (2012) analyzes a static contracting 
problem where an agent exerts hidden effort that affects the informativeness of a signal about the 
suitability of a match between a firm’s product and a buyer’s valuation for it. Unlike in our model, 
it is the buyer and not the firm (the principal) who uses the information provided by the agent 
before purchasing, and the authors focus on different distortions than we do. Finally, Kashyap 
and Kovrijnykh (forthcoming) analyze a model of credit ratings, where rating precision depends 
on the hidden effort exerted by the credit rating agency. Their model is similar to one of the 
extensions that we present in the Online Appendix where the principal can observe an additional 
signal, but they focus on completely different questions than we do.

Another related literature is that on delegated expertise, such as Gromb and Martimort (2007), 
Szalay (2005), and Eso and Szentes (2007) (see also the references cited therein). Gromb and 
Martimort (2007) study (static) incentive contracts for experts who can collude among them-
selves or with the principal. Their one-agent-one-signal case has similarities with our model, 
except that effort is binary, and the agent can misreport his signal. Szalay (2005) analyzes a 
model where the agent has private information about the signal, and the agent has an intrinsic 
interest in making an accurate decision. He shows that the optimal contract rewards for ‘unex-
pected news,’ while in our setting, when the information structure is, e.g., symmetric, the agent 
is instead compensated for confirming the principal’s prior. Eso and Szentes (2007) study a static 
problem between a client and an expert consultant. The expert provides the client with infor-
mation that reduces the noise in her estimate of the value of an investment opportunity. The 
client has private information and the expert designs the contract. In our case, the principal is the 
‘client’ and designs the contract. Also, she does not have private information, and moral hazard 
is on the expert’s side instead.

Finally, a prediction similar in flavor to our rewarding-for-bad-news result appears in Levitt 
and Snyder (1997). They analyze a model where the agent has a private signal of the likelihood 
of the project’s success, and early access to that information is valuable to the principal because 
she can terminate the project. They show that the agent is rewarded for coming forward with bad 
news. Compared to our result, theirs emerges from adverse selection and relies on the benefits 
from early information revelation.

The outline of the paper is as follows. Section 2 describes the model. Section 3 derives main 
properties of the optimal contract in the static case. Section 4 focuses on the dynamic case, 
where we separately consider the cases of commitment to deterministic and random purchase 
decisions. Section 5 concludes. Proofs are in Appendix A, and the Online Appendix contains 
some extensions.
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2. The model

Our dynamic principal–agent model, which subsumes the static version as a special case, has 
the following characteristics.

THE ENVIRONMENT. In each period, there is an option. The quality q of an option is unob-
servable, and it can be low or high, i.e., q ∈ {�, h}. If exercised, a high-quality option yields a 
return yh > 0 to the principal, while the return of a low-quality option is y� < 0. Once an option 
is exercised, the relationship ends.2 The prior belief that the option is of high quality is 0 ≤ γ ≤ 1
(the same in every period), which can also be interpreted as the fraction of high-quality options 
in the pool.

The role of the agent in this relationship is that of an expert who provides the principal with 
information about the quality of the option at hand in each period. More precisely, the agent 
observes a signal θ ∈ {θ�, θh} that is correlated with the quality of that option. How informative 
the signal is about quality depends on the level of effort e that the agent exerts, where 0 ≤ e ≤
ē ≤ ∞. To capture this dependence, we focus on a class of information structures described by 
the following conditional probabilities:

Pr{θ = θh|q = h, e} = α + βhη(e) and Pr{θ = θh|q = �, e} = α − β�η(e), (1)

where 0 < α < 1, βi ≥ 0, i = �, h, β� + βh > 0, and the function η satisfies η(0) = 0, η′(e) > 0, 
and η′′(e) ≤ 0 for all e. Also, to ensure that the expressions in (1) are between zero and one, we 
require lime→ē η(e) ≤ min{(1 − α)/βh, α/β�}.

Note that if effort is zero, the conditional distribution of the signal is the same regardless of 
an option’s quality, and therefore the signal is uninformative. Conditional on the option being of 
a certain quality, the probability of observing a signal consistent with that quality is increasing in 
the agent’s effort. That is, higher effort makes the signal more informative.3

The assumed class of information structures nests the extreme cases βh = 0 or β� = 0, and the 
symmetric case with βh = β�. When βh = 0, the agent’s effort only affects the distribution of the 
signal if the option’s quality is low, so the agent’s effort matters only in detecting bad options. 
The situation is reversed if instead β� = 0. And when βh = β�, the agent’s effort increases the 
likelihood of observing a signal consistent with the unknown option quality by the same amount 
in both states.

Exerting effort e is a costly activity for the agent, which entails a disutility given by ψ(e). The 
function ψ satisfies ψ(0) = 0, ψ ′(e) > 0, ψ ′′(e) > 0 for all e > 0, and lime→ē ψ(e) = +∞. We 
also assume that ψ ′/η′ satisfies ψ ′(0)/η′(0) = 0, (ψ ′/η′)′(0) = 0, and ψ ′/η′ is convex in e. The 
first assumption ensures that the first-order condition of the agent’s effort problem captures its 
solution even if it is zero, and together with the second one it implies that the principal induces 
positive effort if she buys only after observing a high signal realization. The third condition 
makes the principal’s problem strictly concave in e in the static case.4

2 For convenience, we use the terms ‘exercising an option,’ ‘buying,’ and ‘purchasing’ interchangeably.
3 An increase in effort makes observing the signal a more informative experiment in Blackwell’s sense. See Blackwell 

and Girshick (1954), Athey and Levin (2001), Jewitt (2007), and Quah and Strulovici (2009).
4 Convexity of ψ ′/η′ ensures that the principal’s marginal cost of implementing effort under moral hazard is increasing 

in e. Technically, since the principal’s problem includes the first-order condition with respect to effort from the agent’s
problem as an incentive constraint, we impose (sufficient) conditions not only on the second but also on the third deriva-
tives to guarantee that local second-order conditions are satisfied globally. When η(e) is linear in e, the convexity of ψ ′/η′
reduces to the convexity of the marginal disutility of effort ψ ′ , a common assumption in principal–agent problems—see, 
e.g., Jewitt et al. (2008).
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The signal realization is publicly observable, thereby ruling out the possibility that the agent 
may lie about it. (We discuss the relaxation of this assumption in the case when the principal 
observes an additional signal in the Online Appendix.)

Both the principal and the agent are risk neutral and each maximizes the expected sum of 
discounted payoffs using a discount factor 0 ≤ δ < 1. The principal’s per-period payoff is equal 
to the expected payoff from her buying decision (equal to zero if she decides not to buy) minus the 
expected wages paid to the agent. In turn, the agent’s per-period payoff is equal to the expected 
wage received minus the disutility of effort.

If the agent does not work for the principal, he can instead enjoy a reservation utility (in 
expected discounted value terms) equal to zero.5 To avoid a trivial solution, we assume that the 
agent is protected by limited liability, and thus wages are restricted to be nonnegative.

CONTRACTS. At the beginning of the first period, the parties sign a long-term contract that 
covers the duration of the relationship. In each period and for every possible history, it specifies 
the recommended effort to be exerted by the agent, the principal’s decision to exercise an option, 
and a wage paid to the agent (all possibly random) until the principal stops the search, thereby 
ending the relationship. Both the signal realization and the decision to exercise the option are 
contractible events. Finally, we assume full commitment to long-term contracts by both parties. 
(It will become clear below that only the principal’s commitment assumption bites in the model 
because the agent’s reservation utility is zero.)

TIMING. In each period while the game continues, the timing is as follows. First the agent 
exerts effort, which generates a signal, whose realization is publicly observed. Then the principal 
buys or does not buy as prescribed by the contract.6 After that the agent receives the wage in 
accordance with the realized signal and the purchase decision. Finally, if the principal exercises 
the option, the game ends; otherwise the search continues in the next period. She can also stop 
the search without buying by committing to never buy and to pay nothing to the agent in all 
subsequent periods.

Formally, let θt be the signal realization in period t , and let It denote an indicator function 
that describes whether the principal exercises the option (It = 1) or not (It = 0) in period t . 
A non-terminal public history in period t is ht = (θ0, I0, θ1, I1, . . . , θt , It ), such that Iτ = 0 for 
all τ = 0, 1, . . . , t .7 Let Ht be the set of all non-terminal histories in period t . Then, a long-term 
contract is a triple of sequences of recommended effort, probability of buying and wage functions 
{et (h

t−1), σt (h
t−1, θt ), wt(h

t−1, θt , It )}t for all t ≥ 0, all ht−1 ∈ Ht−1, and all possible realiza-
tions of signal θt and purchase decision It . Finally, a contract that also allows for random wages 
and recommended effort levels is a probability distribution over these long-term contracts. As 
usual, a contract is feasible if it satisfies the agent’s participation constraint and the agent follows 
the recommended effort levels at each non-terminal history (i.e., the recommended effort satis-
fies his incentive constraints). A contract is optimal if it is feasible and maximizes the principal’s 
expected discounted profits.

5 We make this assumption to simplify the presentation of the results. With some minor modifications, the analysis can 
accommodate any nonnegative reservation utility.

6 If the contract entails a stochastic purchase decision, then the outcome of the lottery is first observed. Similarly, if the 
contract involves randomization in payments (and recommended effort), then the outcome of a lottery is observed before 
the agent makes his effort choice.

7 Strictly speaking, the definition of a non-terminal history should also include the indicator function of the principal’s 
decision whether or not to stop the search without exercising an option. But since stopping the search can be thought of 
as not paying to the agent and not buying in all subsequent periods, we exclude this additional decision for notational 
simplicity.
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Notice also that we focus on contracts that condition payments on the signal realization and 
purchase decision, but not on the ex-post realization of the state. In addition, we assume that the 
signal realization is public. These assumptions, which are important features of our model, can 
be defended on several grounds. First, as we mentioned in the introduction, they are plausible for 
the described applications (e.g., home inspectors are not paid conditioned on whether a house 
turns out ex post to be of low quality, and the results of many of their tests are easy to observe). 
Second, they lead to novel predictions about the structure of incentives and distortions compared 
to other studies on delegated expertise (e.g., compared to the models of Szalay, 2005, where the 
signal is private, and with Gromb and Martimort, 2007, who condition on the ex-post realization 
of the state). For further comparison, in the Online Appendix we analyze a variation of the model 
that allows for conditioning contracts on an additional signal (and also potentially allowing the 
agent’s signal to be his private information), which collapses to the ex-post realization of the 
state if the signal is perfectly informative.

3. The static case

We first analyze the one-period version of the model. To simplify the notation, we define 
π(e) ≡ γ (α + βhη(e)) + (1 − γ )(α − β�η(e)) as the unconditional probability that a signal is 
high when the agent’s effort level is e. Its derivative, which plays an important role below, is thus 
given by π ′(e) = η′(e)(γβh − (1 − γ )β�). Furthermore, if the principal exercises the option after 
observing a certain signal realization, her expected returns conditional on a given level of effort 
and on observing a high a low signal realization are given by

Eh(e) ≡ E[y|θh, e] = γ (α + βhη(e))yh + (1 − γ )(α − β�η(e))y�

π(e)
,

E�(e) ≡ E[y|θ�, e] = γ (1 − α − βhη(e))yh + (1 − γ )(1 − α + β�η(e))y�

1 − π(e)
.

Also, we define uh(e) ≡ π(e)Eh(e) and u�(e) ≡ (1 − π(e))E�(e).

3.1. Observable effort

Let us consider the first-best case in which the agent’s effort is observable and there is no 
limited liability. Since the solution for this case is equivalent to the one in which the principal 
acquires information herself, we analyze the latter problem. Let σi denote the probability that the 
principal exercises the option after signal θi . The principal solves

max
e≥0,σh∈[0,1],σ�∈[0,1]

−ψ(e) + π(e)σhEh(e) + (1 − π(e))σ�E�(e).

It immediately follows that it is optimal for the principal to buy after a particular signal real-
ization if the expected quality of the option given the signal is positive, and not to buy otherwise. 
Also, since Eh(e) ≥ E�(e), with strict inequality if and only if e > 0, it follows that σh ≥ σ�. It 
also follows that it only pays off to exert effort if the principal intends to exercise the option after 
observing a high signal and not to exercise it after observing a low signal. Indeed, if the prin-
cipal’s decision is independent of the signal realization, then information is wasted, and hence 
putting effort into acquiring it is not optimal. Thus the problem reduces to three relevant alterna-
tives available to the principal, namely, exert no effort and do not buy (which yields a payoff of 
zero), exert no effort and buy (with the expected payoff γyh + (1 − γ )y�), and exert an optimal 
level of effort and buy only if the signal realization is high (yielding maxe −ψ(e) + π(e)Eh(e)).
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The optimal level of effort under the third alternative uniquely solves ψ ′(e) = η′(e)(γβhyh −
(1 − γ )β�y�). We will denote by e∗ the principal’s optimal effort choice in the first-best case.

Intuition suggests that the principal’s optimal decision is to never buy if γ is small enough 
and to always buy if γ is high enough. For intermediate values of γ , she acquires information 
and buys only if the signal is high. The following result formalizes this intuition.

Lemma 1 (Static first best). There exist thresholds γ ∗ and γ̄ ∗, satisfying 0 < γ ∗ < −y�/

(yh − y�) < γ̄ ∗ < 1, such that the principal:
(i) Exerts no effort, i.e., e∗ = 0, and does not exercise the option if γ ∈ [0, γ ∗];
(ii) Exerts no effort, i.e., e∗ = 0, and exercises the option if γ ∈ [γ̄ ∗, 1];
(iii) Exerts a positive level of effort, i.e., e∗ > 0, and exercises the option only when the signal 

realization is high if γ ∈ (γ ∗, γ̄ ∗).

3.2. Unobservable effort

We now turn to the case with unobservable effort—i.e., moral hazard—and limited liability. 
The principal designs a compensation scheme (wh1, wh0, w�1, w�0), where wi1 is the payment 
from the principal to the agent if the signal is θi , i ∈ {h, �}, and the principal exercises the option, 
and wi0 is the corresponding payment if the principal does not exercise the option after signal θi . 
The optimal contracting problem is

max
e,{wi1,wi0,σi }i∈{h,�}

π(e)[σhEh(e) − σhwh1 − (1 − σh)wh0]
+(1 − π(e))[σ�E�(e) − σ�w�1 − (1 − σ�)w�0]

s.t. − ψ(e) + π(e)[σhwh1 + (1 − σh)wh0] + (1 − π(e))[σ�w�1 + (1 − σ�)w�0] ≥ 0,

ψ ′(e) = π ′(e)[σhwh1 + (1 − σh)wh0 − σ�w�1 − (1 − σ�)w�0],
e ≥ 0, wi1 ≥ 0, wi0 ≥ 0, σi ∈ [0,1] for i ∈ {h, �}.

The first constraint is the agent’s participation constraint. The second one summarizes the 
incentive constraints using the first-order condition of the agent’s effort choice problem. The 
last constraints are due to the nonnegativity of effort, the presence of limited liability, and the 
restriction that the probability of purchase lies between zero and one.

Notice that by defining wi ≡ σiwi1 + (1 − σi)wi0, i.e., the expected payment after signal θi , 
i ∈ {h, �}, one can equivalently rewrite the above problem as

max
e,{wi,σi }i∈{h,�}

π(e)[σhEh(e) − wh] + (1 − π(e))[σ�E�(e) − w�]
s.t. − ψ(e) + π(e)wh + (1 − π(e))w� ≥ 0, (2)

ψ ′(e) = π ′(e)[wh − w�], (3)

e ≥ 0, wi ≥ 0, σi ∈ [0,1] for i ∈ {h, �}. (4)

Just as in the first-best case, it is optimal to set σi = 1 whenever Ei(e) > 0 and σi = 0 otherwise. 
That is, the principal never benefits from randomizing over the purchase decision after a particu-
lar signal. Interestingly, we will show later that this result no longer holds in the dynamic version 
of the model.

Hence, we have again reduced the problem to one where there are only three relevant cases: 
(i) the principal does not hire the agent and does not exercise the option (i.e., e = 0 and 
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σh = σ� = 0), (ii) she does not hire the agent and exercises the option (e = 0 and σh = σ� = 1), 
and (iii) she implements positive effort and exercises the option only after the high signal (e > 0, 
σh = 1, and σ� = 0). In terms of the original contract, in the first case, wh0 = w�0 = 0, while 
the choices of wh1 and w�1 are irrelevant, so without loss of generality these payments can be 
set to zero. Similarly, in the second case wh1 = w�1 = 0, while the choices of wh0 and w�0

are irrelevant. In the last case wh = wh1, w� = w�0, and the values of wh0 and w�1 are irrele-
vant.

Let us take a closer look at the first-order condition of the agent’s problem, (3), which, using 
the definition of π(e), can be rewritten as

ψ ′(e) = η′(e)(γβh − (1 − γ )β�)[wh − w�]. (5)

Let γ̂ ≡ β�/(β� + βh) and notice that γ̂ ∈ [0, 1], taking the extreme values 0 and 1 when β� = 0
and βh = 0, respectively (i.e., when the agent’s effort affects the signal distribution in one of 
the two states only), and the value 1/2 when βh = β� (the symmetric information structure). 
Also, π ′(e) ≥ 0 if and only if γ ≥ γ̂ . Thus, the information structure neatly partitions the so-
lution of the principal’s problem into two distinct cases: (i) γ > γ̂ , in which case wh > w�

in order to induce any positive level of effort from the agent, and (ii) γ < γ̂ , in which case 
w� > wh. In both instances the agent’s problem is strictly concave in effort and thus the first-
order approach (replacing the agent’s optimization problem by its first-order condition) is valid 
(Rogerson, 1985a).

Notice that a result that follows from (5) is that as γ approaches γ̂ , it becomes infinitely costly
to induce the agent to choose any positive level of effort. Hence, no effort is implemented for 
values of γ close to γ̂ . Intuitively, the reason is that at this threshold, effort has no impact on the 
unconditional distribution of the signal. Thus, it is impossible to statistically distinguish whether 
or not the agent has exerted effort.

The existence of a value γ such that no positive effort level is implementable depends on the 
class of information structures that we have assumed. To see this, let α + ηh(e) be the proba-
bility of the high signal in the high state and α − η�(e) the corresponding one in the low state. 
Then π(e) = γ [α + ηh(e)] + (1 − γ )[α − η�(e)] and thus π ′(e) = γ η′

h(e) − (1 − γ )η′
�(e). It is 

immediate that the existence of a value for the prior γ such that π ′(e) = 0 for all levels of effort 
requires that η′

h(e)/η
′
�(e) be a constant, which reduces to the class of information structures we 

consider.8 Perhaps more interestingly, notice that even if the ratio is not a constant, for each effort 
level there is a level of the prior γ that makes π ′(e) = 0. In other words, for any level of the prior 
γ we can pin down which effort levels are not implementable.

Proposition 1 summarizes main properties of the optimal contract. Besides γ̂ , a threshold that 
plays an important role below is γ̃ , defined by γ̃ yh + (1 − γ̃ )y� = 0. That is, γ̃ is the value of 
the prior belief at which the principal is just indifferent between buying and not buying without 
information, and thus information is most valuable at this point.

8 This argument extends beyond the binary-signal case. Let F(·|h, e) and F(·|�, e) be the conditional c.d.f. of the 
signal θ under the high and low states, respectively. Then F(θ |e) = γF(θ |h, e) + (1 − γ )F (θ |�, e) and thus Fe(θ |e) =
γFe(θ |h, e) + (1 −γ )Fe(θ |�, e). Necessary conditions for Fe(θ |e) to be equal to zero are then (i) Fe(θ |h, e)Fe(θ |�, e) ≤
0 for all θ and e (which is easy to justify from the Blackwell’s informativeness order as a function of e), and (ii) whenever 
(i) holds with strict inequality on a set of θ of positive measure, then Fe(θ |h, e)/Fe(θ |�, e) = c, where c is a negative 
constant.
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Proposition 1 (Optimal static contract).

(i) If γ > γ̂ , then wh ≥ w� = 0, and if γ < γ̂ , then w� ≥ wh = 0. In both cases, the inequality 
is strict if the implemented level of effort is positive.

(ii) The optimal effort level e is lower than the first-best level e∗, and strictly so if e∗ > 0.
(iii) The optimal effort and buying decisions satisfy the following properties:

(a) There is a threshold γ > γ ∗ such that, for all values of the prior γ ∈ [0, γ ], the principal 
does not hire the agent and never buys, i.e., e = 0 and σh = σ� = 0.

(b) There is a threshold γ̄ < γ̄ ∗ such that, for all values of the prior γ ∈ [γ̄ , 1], the principal 
does not hire the agent and always buys, i.e., e = 0 and σh = σ� = 1.

(c) Unless γ̂ = γ̃ , there exists an interval around γ̂ such that for any value of the prior 
γ in this interval the principal does not hire the agent (e = 0), and either always buys 
(σh = σ� = 1) if γ > γ̃ , or never buys (σh = σ� = 0) if γ ≤ γ̃ .

(d) If γ̂ 
= γ̃ , then there exists an interval around γ̃ , such that for values of the prior in this 
interval the optimal level of effort is positive at the optimum.

As in any moral-hazard problem, compensation is determined by the relative likelihood of 
observing a high vs. a low signal under the implemented effort. The appropriate likelihood ratios 
involve the unconditional probabilities of the signal realizations. Hence

wh ≥ w� ⇔ π ′(e)/π(e) ≥ −π ′(e)/(1 − π(e)) ⇔ π ′(e) ≥ 0 ⇔ γ ≥ γ̂ ⇔ γβh ≥ (1 − γ )β�

Notice that when γ < γ̂ , the optimal compensation scheme is such that the agent gets paid 
only under the low signal realization. We call this feature of the optimal compensation scheme 
rewarding for bad news. As the statement above reveals, γ < γ̂ ⇔ γβh < (1 − γ )β�. Thus, the 
agent is rewarded for bad news if and only if the impact of his effort on the distribution of the 
signal is sufficiently stronger in the low vs. high state. The intuition underlying this property is 
easily explained in the extreme case where βh = 0, and thus π(e) = α − (1 − γ )β�η(e). Since 
the agent’s effort decreases the unconditional probability of a high signal, it makes observing a 
low signal relatively more likely when the agent chooses the effort level that the principal wants 
to implement, than when he chooses a lower level of effort. Hence, his wage should be higher 
when the principal does not buy.

If γ > γ̂ , then the agent is rewarded when the principal exercises an option; i.e., the agent is 
rewarded for good news. This is a typical result in standard principal–agent models with moral 
hazard, where effort stochastically increases the distribution of ‘output’ instead of affecting the 
informativeness of the signal as in our case. Within our framework, this is akin to assuming that 
effort affects the distribution of available options (i.e., higher effort makes a draw of a high-
quality option more likely). Formally, let γ (e) be the probability that an option’s quality is high 
given effort level e, with γ ′(e) > 0 for all e. Suppose that the agent observes a signal of quality 
θ ∈ {θ�, θh}, which is informative (i.e., the probability of observing a high signal when the qual-
ity is high is larger than when it is low), and is independent of effort. Then it is immediate that 
π ′(e) > 0, and the optimal contract always exhibits wh ≥ w� = 0, i.e., the agent gets paid only 
when the principal buys.9

9 In some applications (e.g., when the agent is a real-estate agent or a headhunter) effort can affect both the selection
of an option (the expected quality), and its evaluation (the informativeness of the signal). Our theory predicts that when 
the agent’s effort affects both margins, incentives for the two margins are aligned only when the quality of the pool of 
options is sufficiently improved, i.e., when γ exceeds γ̂ .
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Fig. 1. Effort and profits. The left panel depicts the first- and second-best effort. The right panel shows the principal’s 
profits, i.e., upper envelope of the expected payoff of the three alternatives, in the first- and second-best cases as a function 
of γ . Parameter values and functions: α = 1/2, βh = β� = 1, η(e) = e, ψ = 4e5, yh = 1, and y� = −1/2. In this case, 
γ̂ = .5 and γ̃ = .545.

Regarding the implemented effort, moral hazard and limited liability distort it downward from 
its first-best level. This is a standard result in moral-hazard problems in which contracts are 
conditioned on a binary outcome (e.g., high or low signal realization).

More interesting is the distortion in the principal’s decision to buy. First, as in the first-best 
case, she never exercises an option when γ is close to zero, and always exercises it when γ is 
close to one. We show that the intervals of γ at both ends are larger than in the first-best case, due 
to the lower implemented effort. Second, as γ approaches γ̂ , the endogenous cost of inducing 
positive effort diverges to infinity and precludes any incentive provision. Overall, the principal 
implements a positive level of effort (i.e., induces nontrivial information acquisition) less often 
than in the first-best case.

This begs the question of whether there are values of γ where the principal implements pos-
itive effort at all. A natural candidate is a neighborhood of γ̃ , since at that point the principal is 
indifferent between buying and not buying without information, and thus information is highly 
valuable at this point. In the knife-edge case when γ = γ̂ = γ̃ , the principal will not implement 
effort at γ = γ̃ . But so long as γ̂ 
= γ̃ , the optimal effort is positive at γ = γ̃ (and in a neigh-
borhood of it).10 Still, when γ̃ is close enough to γ̂ , there are priors between γ̃ and γ̂ where 
information is very valuable, yet it is not acquired.

Fig. 1 illustrates the optimal effort and decision to buy as functions of γ in the first- and 
second-best cases. Effort in the latter is lower than in the former, and it is positive for intermediate 
values of γ outside an interval around γ̂ = 1/2. Also, the principal buys after the high signal 
realization on a smaller set of values of γ in the second best.

10 The reason is that the marginal cost of inducing a small amount of effort is zero (since ψ ′(0)/η′(0) = (ψ ′/η′)′(0) =
0), while its marginal benefit is positive. Note that γ̂ 
= γ̃ is sufficient but not necessary for effort to be positive for some 
priors.
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3.2.1. Comparison with the standard principal–agent model
An insight that percolates throughout the paper is that sometimes the principal rewards the 

agent when she does not buy, which happens when the signal realization is low. A simple expla-
nation is that the signal plays a dual role (see Grossman and Hart, 1983, p. 9). First, it affects 
the principal’s decision to buy, and in this role she prefers a higher signal realization. Second, 
it provides information about the agent’s effort, and in this role she might prefer a higher or a 
lower signal depending on which one is more informative about effort. Thus, when the princi-
pal’s preferences regarding these roles are not aligned, rewarding for bad news ensues. This paper 
provides a natural class of principal–agent problems with moral hazard where a conflict between 
these roles emerges endogenously.

To support this claim, we illustrate the difficulties in obtaining a similar result in a standard 
principal–agent problem with moral hazard and two outcomes, success and failure. Let success 
yield revenue q > 0 while failure, for simplicity, yields 0. Also, let π(e) be the probability of 
success. The rest is as in our model.

If one exogenously assumes that π ′(e) < 0, then clearly the optimal contract that implements 
any positive level of effort pays a higher wage if failure is observed, and thus exhibits rewarding 
for bad news. But in this case the optimal level of effort the principal implements is trivially zero, 
since expected revenue π(e)q decreases with effort.

One could assume that success yields a random output whose mean q̄(e) is increasing in e, 
and that contracts can only be conditioned on success or failure but not on the observed output. 
But since π ′(e) < 0, one needs another exogenous assumption to ensure that π(e)q̄(e) does not
decrease in e, otherwise the optimal choice would again be e = 0.

Similar remarks apply to our no-effort-around-γ̂ result, where as γ approaches γ̂ , the like-
lihood ratio π ′(e)/π(e) goes to zero for all e, and hence effort implementation becomes pro-
hibitively costly for the principal (i.e., the role of the signal as information about effort dis-
appears). This has no natural counterpart in the standard principal–agent model, since π is a 
primitive of the problem instead of being ‘micro-founded’ via the prior and the signal dis-
tribution, as in our model. And although one can construct instances of the standard model 
where the principal prefers not to hire the agent due to moral hazard costs, they would re-
quire assumptions on the primitives (such as little variation of the likelihood ratio), rather 
than occurring endogenously as in our model. Moreover, in our model effort is zero only for 
some (endogenously determined) set of values of γ . Since in the standard model π is a prim-
itive, there is no analogous parameter depending on which there could be no incentive provi-
sion.

4. The dynamic case

We now turn to the dynamic version of the model; that is, δ > 0 henceforth.

4.1. Observable effort

As in the static case, we start with the first-best case in which the principal acquires informa-
tion herself. The problem becomes a simple optimal stopping exercise. Since the environment is 
stationary, so is the principal’s strategy. Moreover, as in the static case, there is no benefit for the 
principal from using randomization. Thus, the problem once again reduces to the analysis of the 
three relevant scenarios: (a) the principal does not exert effort and never buys, which yields zero
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profits; (b) she does not exert effort and buys the first option, which yields γyh + (1 − γ )y�; and 
(c) she exerts a constant positive level of effort in each period and buys the first time a signal 
realization is high.

Let S∗ be the expected discounted profits for the principal under strategy (c). Then S∗ satisfies 
the recursion S∗ = maxe −ψ(e) + π(e)Eh(e) + (1 − π(e))δS∗. The first-order condition to this 
problem is ψ ′(e) = η′(e)(γβhyh − (1 − γ )β�y� − (γβh − (1 − γ )β�)δS

∗). It is easy to verify 
that the level of effort that solves this equation is positive.

Let e∗∗ be the optimal level of effort in the dynamic first-best case. The following result 
describes main properties of the solution to the principal’s problem.

Lemma 2 (Dynamic first best). There exist thresholds γ ∗∗ and γ̄ ∗∗, satisfying 0 < γ ∗∗ <

−y�/(yh − y�) < γ̄ ∗∗ < 1, so that the principal:
(i) Exerts no effort, i.e., e∗∗ = 0, and does not exercise the option if γ ∈ [0, γ ∗∗];
(ii) Exerts no effort, i.e., e∗∗ = 0, and exercises the option if γ ∈ [γ̄ ∗∗, 1];
(iii) Exerts a positive level of effort, i.e., e∗∗ > 0, and exercises the option if and only if the 

signal realization is high, if γ ∈ (γ ∗∗, γ̄ ∗∗);
(iv) If γ > γ̂ , then e∗∗ ≤ e∗ (with strict inequality if e∗ > 0), γ ∗∗ > γ ∗, and γ̄ ∗∗ < γ̄ ∗. If 

γ < γ̂ , then e∗∗ ≥ e∗ (with strict inequality if e∗∗ > 0), γ ∗∗ < γ ∗, and γ̄ ∗∗ > γ̄ ∗. If γ = γ̂ , then 
e∗∗ = e∗, γ ∗∗ = γ ∗, and γ̄ ∗∗ = γ̄ ∗.

We stress the simple nature of the problem’s solution in the first-best case, derived from the 
extremely basic search problem of the principal. Effort is constant and it is positive if and only 
if the principal plans to buy under the high but not under the low signal. This simple solution 
is all the more striking when compared to the richness of the dynamics and distortions that we 
obtain below, which are due exclusively to the moral-hazard problem that delegated information 
acquisition introduces.

4.2. Unobservable effort

We now proceed to analyze the principal’s optimal contracting problem in the second-best 
case, i.e., when effort is unobservable and there is limited liability.

4.2.1. Recursive formulation of the contracting problem
Following a standard argument, one can rewrite the sequence problem corresponding to the 

optimal contract in recursive form, with the promised value to the agent as a state variable, and 
continuation values as control variables.11 Crucially, in any period the promised value summa-
rizes the history of play. As a result, one can recover the solution in sequence form from the 
recursive one, and thus such formulation is without loss of generality.

To this end, let U(V ) be the principal’s value function when the promised value to the agent 
is V . Also, let wi1 denote the immediate payment from the principal to the agent if the principal 
exercises an option after signal θi (in which case the game ends). Finally, let wi0 and Vi be 
the agent’s immediate payment and his continuation value if the principal does not exercise the 
option after signal θi .

11 The classic references are Abreu et al. (1986), Abreu et al. (1990), and Spear and Srivastava (1987).
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The maximization problem of the principal is as follows:12

U(V ) = max
e,{wi1,wi0,Vi ,σi }i∈{h,�}

E{π(e)[σh(Eh(e) − wh1) + (1 − σh)(−wh0 + δU(Vh))]
+(1 − π(e))[σ�(E�(e) − w�1) + (1 − σ�)(−w�0 + δU(V�))]} (6)

s.t. E{−ψ(e) + π(e)[σhwh1 + (1 − σh)(wh0 + δVh)]
+(1 − π(e))[σ�w�1 + (1 − σ�)(w�0 + δV�)]} = V, (7)

ψ ′(e) = π ′(e)[σhwh1 + (1 − σh)(wh0 + δVh) − σ�w�1 − (1 − σ�)(w�0 + δV�)]
for each realization (wh1,w�1,wh0,w�0,Vh,V�, σh, σ�), (8)

e ≥ 0, wi1 ≥ 0, wi0 ≥ 0, Vi ≥ 0, σi ∈  for i ∈ {h, �}, (9)

where  is a subset of [0, 1] that includes 0 and 1. In what follows, besides the general case 
 = [0, 1], we will also consider the case where the principal can only commit to purchase or 
not with certainty, i.e.,  = {0, 1}. We will see that this case is tightly related to the case where 
the principal cannot commit to the purchase decision at all.

Constraint (7) is the promise-keeping constraint: the principal indeed has to deliver the 
promised value V to the agent.13 Constraint (8) is the incentive constraint, which ensures that the 
agent optimally chooses the effort implemented by the principal. Finally, constraints (9) ensure 
that wages are nonnegative (limited liability) and similarly for the agent’s promised values.14

A technical hurdle in solving this problem is that, although U is concave due to the use of 
lotteries, it need not be differentiable everywhere. Its presence in the objective function makes 
the problem nonsmooth, and we tackle it in Appendix A using superdifferentials.

4.2.2. General properties of the optimal contract
As in the static case, it follows from the incentive constraint that the cost of implementing 

any positive effort level goes to infinity as γ approaches γ̂ , thereby precluding any incentive 
provision. Also, it is easy to verify that e = 0 and σh = σ� = 0 if γ is close to zero, and e = 0
and σh = σ� = 1 if γ is close to one.

Before we derive the main properties of the optimal contract, we mention a useful result 
(see Lemma 7 in Appendix A), namely, that the value function U has slope greater than minus 
one. Indeed, suppose that the promised value to the agent increases by one unit. The principal 
can always deliver the extra value by increasing all current wages by one unit and continuation 
values by 1/δ, so that the marginal cost of an increase in the promised value to the principal is 
exactly one. By optimizing, she can potentially do better.

A straightforward implication of this result is that the principal weakly prefers to set wh0 =
w�0 = 0, as the marginal cost of compensating the agent with current wages is one, while the 
marginal cost of compensating him using continuation values (given by the absolute value of 

12 Since the principal may benefit from the use of stochastic contracts, the choice of wages, continuation values, and 
hence the induced level of effort, can be random variables. The expectation in the objective function and the promise-
keeping constraints is taken with respect to these random variables. Wlog, we consider random variables with finite 
support as they are enough for our purposes.
13 Note that, as is standard in models with moral hazard, the promise-keeping constraint has to be imposed with equality 
in all periods except the first period, when it is imposed with a weak inequality.
14 The agent can always guarantee for himself zero discounted utility by exerting no effort in every period. Alternatively, 
nonnegativity of continuation values can be interpreted as the agent’s participation constraints if we assumed that he can 
walk away from the contract and collect his zero reservation utility.
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the slope of U(Vi), i ∈ {h, �}) is less than or equal to one. Moreover, whenever the inequality 
is strict, setting wi0 > 0, i ∈ {h, �}, is not optimal so long as σi < 1, and thus the principal 
strictly prefers to postpone payments. (If σi = 1, then the choice of wi0 is irrelevant.) Similarly, 
whenever σi < 1, it is optimal to set wi1 = 0, i ∈ {h, �}.

This observation reveals an important difference between the static and dynamic cases. In the 
static case, the agent is compensated in the event of purchase if and only if γ > γ̂ . By contrast, in 
the dynamic case he gets paid at the end of the relationship (i.e., when the principal buys) for all
values of γ . To provide the agent with incentives to exert effort, the level of the payment depends 
on the history, summarized by the promised value V .

Clearly, when the slope of U is minus one, the principal is indifferent between making pay-
ments now or in the future. We will see that the first best obtains in this case.

Define V ∗ = inf{V |U ′(V ) = −1}. Using the above result, we will simplify the notation by 
setting wh0 and w�0 to zero and use wh and w� instead of wh1 and w�1, respectively. Thus, in 
particular, the agent’s incentive constraint becomes ψ ′(e) = π ′(e)[σhwh + (1 −σh)δVh −σ�w� −
(1 − σ�)δV�]. Notice that the value σiwi + (1 − σi)δVi , i ∈ {h, �}, is the expected payoff to the 
agent after signal i. The next proposition establishes some properties of the optimal contract.

Proposition 2 (Optimal dynamic contract).

(i) Suppose that V ∈ (0, V ∗).
(a) If γ > γ̂ , then σhwh +(1 −σh)δVh ≥ σ�w� +(1 −σ�)δV�, with strict inequality if e > 0. 

Moreover, if e > 0, then Vh > V (and wh = 0 is optimal) whenever σh < 1, and V� < V

(and w� = 0 is optimal) whenever σ� < 1.
(b) If γ < γ̂ , then σhwh + (1 − σh)δVh ≤ σ�w� + (1 − σ�)δV�, with strict inequality if 

e > 0. Moreover, if e > 0, then wh = 0 is always optimal, Vh < V whenever σh < 1, 
and V� > V (and w� = 0 is optimal) whenever σ� < 1.

(ii) If V = 0, then e = 0, σhwh + (1 − σh)δVh = 0, and σ�w� + (1 − σ�)δV� = 0. Moreover, 
σh = σ� = 1 (and wh = w� = 0) if γ > γ̃ , while σh = σ� = 0 (and Vh = V� = 0) if γ < γ̃ . If 
γ = γ̃ , then any values of σh and σ� are optimal.

(iii) If V ∗ > 0, then for all V ≥ V ∗ the first-best effort level e∗∗ is implemented in every period.15

As in the static case, when γ < γ̂ , the agent is rewarded for bad news (part (i)-(b)). A new 
feature of the dynamic case is that he is not compensated immediately after a low signal re-
alization, but via an increase in his continuation value (i.e., future payments). Similarly, when 
γ > γ̂ , the agent is punished for bad news by a decrease in his continuation value (part (i)-(a)). 
In particular, if effort is positive and σh = 1 and σ� = 0, then wh = 0 and V� > V if γ < γ̂ , while 
wh > δV� and V� < V if γ > γ̂ . As mentioned, the first case (γ < γ̂ ) is specific to our model 
where the agent’s effort affects the signal informativeness.

Part (ii) reveals that V = 0 is an absorbing state, since (when the principal continues) all 
continuation values are set to zero. The agent exerts no effort and does not get paid.

Finally, part (iii) shows that when the agent’s promised value is sufficiently high, the principal 
implements the first-best level of effort from that period onwards. The basic reason is that in this 
case limited liability is no longer binding. Since the first best is achieved, she only buys after the 
high signal (σh = 1 and σ� = 0). The timing of payments (i.e., how the principal uses wh vs. V�) 

15 The threshold V ∗ is positive whenever the principal implements e > 0 at the optimum for some V .
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from this point onward is indeterminate, as the principal is indifferent between paying now and 
in the future (for U ′(V ) = −1 for V ≥ V ∗).

Notice that V ∗ equals zero when the principal implements e = 0 for all V ≥ 0. This occurs if 
γ ∈ [0, γ ∗∗] ∪ [γ̄ ∗∗, 1] or is close enough to γ̂ . This reveals an interesting point. Implementation 
of the first best for high enough V is standard in models with risk neutrality. A novel insight 
here is that around γ̂ , not only the first best is not achieved, but also positive effort cannot be 
implemented, regardless of how high the promised value V is.

When γ < γ̂ , the optimal contract prescribes no payments until the implementation of the 
first-best effort (after which point the timing of payments is indeterminate). One way to imple-
ment the first-best effort when γ < γ̂ is with a fixed per-period payment independent of the 
signal realization. This generates incentives to deliver bad news, because after bad news the 
search continues, which allows the agent to remain employed by the principal.

This is in line with what we observe with home inspectors. Indeed, in reality home inspectors 
are paid a given amount per inspection, independently of the report. It is important to stress, 
though, that this contract would not implement any positive effort level if γ > γ̂ , which is 
arguably the less relevant case in this application. For while the inspector’s effort might be impor-
tant for finding out good news (e.g., the house has been recently insulated), it is perhaps mostly 
crucial for finding out bad news (e.g., there is a crack in the roof).

Although in our model γ is fixed, it would not be hard to allow it to vary over time.16 Then 
whether the optimal contract rewards the agent for good or bad news will also vary over time, 
depending on whether the realization of γ falls above or below γ̂ . Also, when the realization of 
γ is close enough to γ̂ , the agent’s services will not be used in that period.

In the context of the home-inspector example, the changing γ reflects the fact that the potential 
buyer might be considering houses of different ‘perceived’ quality.17 This extension suggests an 
interpretation of our result of no effort around γ̂ . When a house comes along with the prior close 
to the critical point where the inspector’s effort does not change how likely he is to find out good 
vs. bad news about the house, the potential buyer will not use the inspector’s services.

4.2.3. The  = {0, 1} case
Proposition 2 applies to any set  that contains 0 and 1, thus potentially allowing the princi-

pal to commit to lotteries over the purchase decision. In this section we consider a special case, 
namely,  = {0, 1}, where the principal can only commit to buy or not to buy with probability 
one after each signal realization.18 Besides providing insights about the optimal contract in these 
‘corners,’ which are also part of the general set  = [0, 1], we show that this case is outcome-
equivalent to the case in which the principal cannot commit at all to the purchase decision. We 
assume throughout, however, that the principal can commit to lotteries over contracts, as we did 
in the previous section.19

Given this restriction on , there are four relevant cases to consider (plus convex combina-
tions thereof, due to the use of random contracts). Indeed, (a) the principal can commit not to 

16 In the recursive formulation, the realization of γ would enter as another state variable, and the choices of the contin-
uation values will be contingent on the next period’s realization of γ .
17 Notice that γ reflects not just the quality of the house, but rather the quality relative to the price as well as how well 
the house matches the potential buyer’s criteria.
18 This could happen because, say, the outcome of the randomizing device that determines σi , i ∈ {�, h}, is not observ-
able to a third party and hence cannot be contracted upon.
19 Allowing for such lotteries is crucial for our analysis as it ensures that the value function is concave.
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buy today after either signal realization (and continue optimally from tomorrow onward), a strat-
egy whose expected discounted profit to the principal when the agent’s promised utility is V is 
denoted by U00(V ); (b) she can commit to buy today after either signal realization, with the ex-
pected discounted profit denoted by U11(V ); (c) she can commit to buy today after a high signal 
realization and not to buy after a low one, with expected discounted payoff denoted by U10(V ); 
and (d) she can commit to buy today after a low signal realization and not to buy after a high 
one, with expected discounted payoff denoted by U01(V ).

Notice that under alternative (b), the principal buys under both signal realizations, and thus 
the game ends with probability one. It follows that she will never implement positive effort in this 
case, and the value of this alternative to the principal is simply U11(V ) = γyh + (1 − γ )y� − V .

Regarding alternative (c), the main properties of the contract are the ones described in Propo-
sition 2 once we specialize to this corner. In addition, we can show that whenever the principal 
finds it optimal to use this strategy, she implements positive effort. Intuitively, if she acquired no 
information, either (a) or (b) would dominate this strategy.

Intuition suggests that alternative (d) must be dominated by the other ones. After all, it does 
not seem to use information in an efficient way. This intuition might be misleading, however, 
since committing to an ex-ante inefficient decision may pay off to the principal if it leads to 
a higher continuation value or if it relaxes the constraint set. We show that alternative (d) is 
indeed dominated and thus irrelevant for the problem at hand. The proof is long and somewhat 
involved, but its structure is straightforward: we first prove that under alternative (d) the effort 
implemented by the contract is zero; given this, it follows at once that either alternative (a) or 
(b) yields a higher payoff. We thus have the following claim.

Claim 1. In the optimal long-term contract, the principal never commits to buy after a low signal 
realization and not to buy after a high signal realization.

Another insight concerns alternative (a). We show that even when the principal chooses not 
to buy after either signal realization, she sometimes finds it optimal to implement positive effort. 
This is a priori counterintuitive, especially if one thinks about the first-best case, where the prin-
cipal would never acquire costly information if she plans not to buy under any signal realization. 
But under moral hazard there is a subtle countervailing effect: by suitably structuring continu-
ation values for the agent, the expected future surplus from the relationship can go up, and this 
provides enough incentives for the principal to implement positive effort. We pin down exactly 
where this occurs when U is sufficiently smooth:20

Claim 2. Suppose that V > 0 and the principal optimally commits not to buy after either signal 
realization. If U is decreasing, then the principal implements zero effort at V . And if U is strictly 
increasing and twice continuously differentiable at V , then the effort level implemented at V is 
positive.21

20 This assumption is only used when applying L’Hopital’s Rule at one point in the proof.
21 The value function U can increase in V over some region because the promise-keeping constraint is imposed with 
equality. In this region, the optimal contract is not “renegotiation-proof,” i.e., the corresponding payoff profile does not 
lie on the Pareto frontier, so both parties benefit from increasing V . If (7) were imposed with a weak inequality, the 
principal could assign high continuation values without wasting effort (i.e., with e = 0). But to satisfy (7) with equality, 
higher continuation values require positive effort.
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This result is not related, for example, to testing the accuracy of the agent. Indeed, since in 
our model there is no learning about the pool of the options, effort in any given period serves 
only two purposes: it improves information about the current option, and allows the principal to 
compensate the agent with higher continuation values in order to improve information in future 
periods. When the principal does not buy after either signal, she does not use the first purpose of 
effort, but may want to use the second one.

All told, when the principal can commit to corners only, the values U00, U11, and U10 (plus 
convex combinations of these alternatives) are the relevant ones to consider. This begs the fol-
lowing questions: Which of the three alternatives is used at a given value V ? When does the 
principal use convex combinations of the alternatives (lotteries)? Part (ii) of Proposition 2 tells 
us that either U11 or U00 is optimal at V = 0 depending on whether γ is above or below γ̃ . 
Also, part (iii) of Proposition 2 implies that U = U10 for V above V ∗ (when V ∗ > 0). In fact, 
one can show that U(V ) = U10(V ) for V ≥ V̄ , where V̄ < V ∗. In particular, when U has an 
upward sloping portion, V̄ is the promised value at which the slope of U is zero. (See Claim 4
in Appendix A.) The principal will use convex combinations of U10 and either U11 or U00 (on a 
set of promised values) below V̄ .

It is straightforward to show that the  = {0, 1} case is outcome-equivalent (in terms of on-
the-equilibrium-path payments and effort) to the case when the principal cannot commit at all 
to the purchase decision. For example, although payments can be enforced in court, there may 
not be a mechanism in place to enforce the purchase decision, since ex post this decision only 
affects the principal and no other parties. In the latter case, the purchase decision must be ex-post 
optimal after each signal realization, and thus the corresponding ex-post optimality constraints 
must be added to the problem.

Since the principal can still commit to lotteries over contracts, it is easy to see that these con-
straints can be made slack by suitably choosing off-the-equilibrium-path payments. To illustrate, 
in the U10 problem the ex-post optimality constraints are Eh(e) − wh1 ≥ −wh0 + δU(Vh) and 
−w�0 +δU(V�) ≥ E�(e) −w�1. Since wh0 and Vh do not enter into payoffs of either the principal 
or the agent (as 1 −σh = 0), the principal can set wh0 and/or Vh arbitrarily high so that the payoff 
from not buying after the high signal, −wh0 + δU(Vh), is arbitrarily low. Similarly with w�1.22

Moreover, the proof of domination of U01 does not rely on the assumption of commitment, and 
hence that result holds in the no-commitment case as well. Since the same alternatives (a)–(c)

are relevant with and without commitment, and since ex-post constraints can be freely satisfied, 
the two cases are outcome-equivalent.

The case of  = {0, 1} may be also relevant in applications. For instance, in the home-
inspector example, it might be hard for a potential home buyer to commit not to buy a house 
when it is ex-post optimal to do so.

4.2.4. The  = [0, 1] case and the optimality of lotteries over purchase
Besides the  = {0, 1} case, an interesting issue to explore is whether the principal could 

benefit if she were able to commit to ‘interior’ purchase lotteries. This is a difficult question to 
answer since purchase lotteries interact with lotteries over contracts, and it is unclear a priori 

22 The only subtlety is when the principal sets things up so as to be indifferent ex post between buying and not buying, 
in which case she could randomize. However, it is easy to show that in this case the principal can do just as well by 
following a deterministic purchase decision.
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whether the former are redundant given the latter.23 We show, however, that there is a set of 
parameter values such that they are indeed used in equilibrium.

We first state an intermediate result, which asserts that there is a threshold effort level such 
that σh = 1 is optimal if and only if the implemented effort is above that threshold.

Lemma 3. Assume γ > γ̂ , and let ẽ be the unique solution to Eh(ẽ) = δS∗.24 Let V be such 
that the principal implements positive level of effort. Then σh = 1 is optimal if and only if the 
implemented effort level e is above ẽ. Moreover, if e ∈ (0, ẽ), then σh arbitrarily close to one 
cannot be optimal.

We are now ready to state the main result of this section.

Proposition 3. Assume γ > γ̃ ≥ γ̂ , (ψ ′/η′)′′(0) > 0, and that the principal implements positive 
effort at least for some V . Then there is an interval of small values of V > 0 such that the optimal 
contract involves an interior purchase lottery with σh ∈ (0, 1).

The proof is long and technical, but it is easy to explain its main steps and the use of the 
assumptions made in the statement of the proposition. Suppose that the principal only uses con-
tracts with deterministic payments (and hence implements a deterministic effort level) in the 
current period. The promised value V restricts the set of effort levels that can be implemented. 
In particular, when V is small enough, the implemented effort must be below ẽ, and hence by 
Lemma 3 we have σh < 1. We show further that when γ > γ̃ so that Eh(0) = E�(0) > 0, σh = 0
is not optimal for sufficiently small levels of V . Therefore, σh must be interior.

The proof is not complete though, for we still need to rule out a possibility that the interior pur-
chase lottery is actually not used in equilibrium. In particular, it could be dominated by a lottery 
over contracts (i.e., lottery over payments) each of which involves a deterministic purchase deci-
sion. We show that imposing the additional assumption (ψ ′/π ′)′′(0) > 0 (together with γ > γ̃ ) 
rules this out.

Intuitively, why is it optimal for the principal to sometimes commit to a random purchase 
decision? The underlying reason is that it is cheaper for the principal to pay to the agent in the 
future rather than today (formally, the marginal cost of current payments is equal to one, and 
it exceeds the marginal cost of future payments, given by |U ′|). Recall that if γ > γ̂ and the 
principal implements positive effort and buys with certainty after the high signal realization, 
then she optimally sets wh > 0 (see part (a) of Proposition 2). Suppose instead that the principal 
continues the search after the high signal realization with some probability. Since it is optimal 
to postpone payments, she will now make zero immediate payment. And by choosing Vh =
wh/[δ(1 − σh)], where wh is the immediate payment in the old contract, she can implement 
the same effort as before. Now, whether the principal can actually increase profits by using an 
interior lottery is a bit more subtle. For if σh is chosen to be arbitrarily close to one, then Vh ≥ V ∗
and hence U ′(Vh) = −1; as a result, the principal saves nothing by postponing the payment in 
this case (see the second part of Lemma 3). But if she chooses σh so that U ′(Vh) > −1, then 

23 One may also wonder whether lotteries over contracts might be redundant given the purchase lotteries. If the signal 
were continuous, then an argument like the one in Spear and Srivastava (1987) would show that the value function is 
concave, so lotteries over contracts would be redundant. With a discrete signal, however, these lotteries are needed to 
make the value function concave.
24 It is easy to check that ẽ < e∗∗, where e∗∗ is the dynamic first-best effort level.
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she can implement the same effort level at a lower cost. When this effect just offsets the loss of 
surplus due to the ex-post suboptimal purchase decision, the optimality of σh ∈ (0, 1) ensues.

The above intuition suggests that the optimality of interior purchase lotteries crucially depends 
on the asymmetry embedded in our model: once the principal buys, the game is over. It is easy 
to show that if instead the game always continued (i.e., if the principal could exercise multiple 
options over time), then interior purchase lotteries would not be optimal. More precisely, after 
any signal realization, the principal would set the same continuation values after buying and not 
buying. She no longer reduces cost by not buying, and hence there is no benefit in committing to 
an ex-post suboptimal purchase decision.

Clearly, unless the principal is just indifferent between buying and not buying after signal θi , 
a lottery with an interior σi is ex-post suboptimal. We now explore whether ex post the prin-
cipal prefers to buy (i.e., Ei(e) − wi ≥ δU(Vi)) or not to buy (i.e., Ei(e) − wi ≤ δU(Vi)). 
Claim 3 shows that either situation may occur depending on the continuation promised value 
to the agent.25 Before stating the result, it will be useful to present the first-order condition with 
respect to σi , i ∈ {h, �}, which for an interior solution is given by (see Appendix A.4 for the 
derivations)

Ei(e) − δU(Vi) + δU ′(Vi)Vi = 0, (10)

or equivalently

Ei(e) − δS(Vi) + δS′(Vi)Vi = 0, (11)

where S(V ) = U(V ) + V is the social surplus when the promised value to the agent is V .26

Claim 3. Suppose σi ∈ (0, 1) is optimal for some i ∈ {h, �}. Then it is ex-post optimal for the 
principal to buy if and only if U is strictly decreasing at Vi . However, from the social point of 
view it is always ex-post optimal not to buy.

The first part of the result immediately follows from (10) (recall that wi = 0 when σi < 1), 
and the second part from (11). Notice that from the social point of view, whenever an interior pur-
chase lottery is used, it is optimal not to buy ex post (i.e., Ei(e) ≤ δS(Vi), with strict inequality 
unless Vi ≥ V ∗ for then S′(Vi) = 0). The reason is that an increase in the probability of buying, 
σi , is accompanied by an increase in the corresponding continuation value to the agent, Vi (as a 
way to satisfy the constraints while keeping everything else unchanged), which in turn increases 
the continuation social surplus, S(Vi). The principal takes this effect into account ex ante when 
committing to a lottery, but not ex post.

We have provided conditions under which interior lotteries are used in equilibrium. It is very 
hard and beyond the scope of this section to provide a full-blown characterization of which values 
of σi ’s will be optimal for a given value V . But in some cases we can say more about the use 
of these lotteries. For instance, one can show that if γ ≤ γ̃ , then σ� = 0 for all V . Furthermore, 
if γ < γ̂ and e > 0, then σh ≥ σ�, and both σi ’s cannot be interior. (See Claims 5 and 6 in 
Appendix A.) In fact, in the γ < γ̂ case our numerical computations always delivered corner 
solutions for σh and σ�.

25 In our numerical computations, both situations can occur in equilibrium.
26 Here for simplicity we write the equations assuming that the value function is differentiable at Vi . The derivations in 
Appendix A do not use this assumption.
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Fig. 2. Optimal dynamic contract. The left panel depicts the optimal effort. The right panel shows the optimal probabil-
ity of purchase after the high signal. Parameter values and functions: α = 1/2, βh = β� = 1, η(e) = e, ψ = 3e4, yh = 1, 
y� = −2.5, δ = .9, and γ = 0.7, which is above γ̂ = 0.5 and below γ̃ ≈ 0.714.

Fig. 2 illustrates the optimal choices of σi’s using numerical computations. The left and right 
panels depict the optimal choices of effort and σh, respectively, as functions of V . The parameter 
values are listed in the figure’s caption. While we only show the numerical results for specific 
parameter values, the figures are representative in the sense that the curves look similar for many 
other choices of parameters.

Since γ < γ̃ , it follows that σh = σ� = 0 at V = 0 (see part (ii) of Proposition 2), and σ� = 0
is optimal for all V (see Claim 5 in Appendix A). Moreover, σh is interior up to a promised value 
V ≈ 0.6 for which e(V ) = ẽ (see Lemma 3), at which point σh discretely jumps to one. Finally, 
the first-best effort is implemented above V ∗ ≈ 7.2 (see part (iii) of Proposition 2). It is worth 
pointing out that two of the assumptions of Proposition 3 are not met in this numerical example, 
namely, the assumptions that γ > γ̃ and (ψ ′/π ′)′′(0) > 0. Notice, however, that σh is still interior 
for small enough promised values, thereby illustrating that the conditions of Proposition 3 are 
merely sufficient.27

4.2.5. Optimal effort
Finally, we conclude the analysis of the properties of the optimal contract with a comparison 

of the constrained optimal level of effort with the first-best effort. In the static case we showed 
that the optimal effort was always below its first-best level. This property partially extends to the 
dynamic case as well.

Proposition 4 (Optimal effort). If γ < γ̂ , then e(V ) ≤ e∗∗ for all V .

27 We are not sure if the interior portion of the σh curve appears jagged due to a numerical error, or it is in fact 
non-monotone. Notice though that in some cases σh can indeed be non-monotone in V . For example, if γ > γ̂ and 
γ > γ̃ , then σh = 1 at V = 0, σh < 1 whenever e ∈ (0, ̃e) (for V > 0 small enough) and σh = 1 when e > ẽ (for V large 
enough).
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To understand the intuition behind this result and why it is only stated for γ < γ̂ , consider the 
marginal cost and marginal benefit of effort in the first- and second-best cases. Regardless of γ , 
the marginal cost of effort is higher in the second-best case due to moral hazard. Also, when 
γ < γ̂ , higher effort makes continuing the search more likely. Since future social surplus in 
the second best is lower than in the first best, the social benefit of continuing the search is also 
lower, and hence the marginal benefit of effort is lower. And since the marginal cost is higher and 
the marginal benefit is lower, lower effort obtains. When γ > γ̂ , however, higher effort makes 
ongoing search less likely, but stopping yields a lower loss of future social surplus relative to the 
first best. That is, there are two effect that go in opposite directions, making the comparison of 
effort levels ambiguous.28

This result is noteworthy given (to the best of our knowledge) the lack of formal results on the 
comparison between first- and second-best effort levels in dynamic moral hazard problems, be 
it with a risk-averse agent or with a risk-neutral one and limited liability.29 Moreover, we obtain 
an unambiguous answer exactly when γ < γ̂ , which is the novel case that pertains to our model, 
where effort affects the informativeness of the signal.

5. Concluding remarks

We study a problem where a principal searches for an opportunity of uncertain return, and 
hires an agent to acquire information about potential options. Information precision depends 
on the agent’s unobservable effort. Based on the information the agent provides, the principal 
decides whether to stop and exercise the option, or to continue the search.

We provide a complete analysis of the optimal contract both in the static and dynamic cases. 
Among the main properties of the contract, we highlight the following ones. First, effort provision 
and the optimal buying decision are distorted compared to the first best. This is due to the cost 
of providing incentives for effort. In particular, there is a region of the prior belief that the option 
quality is high, where positive effort cannot be sustained. The reason is that effort has no (or little) 
impact on the unconditional distribution of the signal, and hence on the likelihood ratio, thereby 
making incentive provision infinitely costly. Second, for prior beliefs just below that region, the 
optimal contract calls for rewarding for bad news, i.e., the agent receives a higher compensation 
in the event in which the information revealed induces the principal to pass on the option at hand. 
This property can be traced back to the role of the agent’s effort in affecting the informativeness
of the signal about the option quality, and has no counterpart in standard moral-hazard models 
where an agent’s effort affects the distribution of output. Third, we find that the principal may 
find it optimal to commit to a random (and thus ex-post suboptimal) purchase decision. This 
result is due to the asymmetry that the purchase decision entails: the game ends if the principal 
buys, but continues otherwise, and postponing payments benefits the principal.

We assume that the fraction of high quality options is known, so that the parties do not learn 
about the pool of options over time. We also assume that there is no recall of passed options. 

28 However, in all our numerical computations the effort was always below the first best.
29 In the static case, it is well known that with a risk-neutral agent, limited liability, and two outcomes, the first-best 
effort level is higher than the second-best one. With a risk-averse agent, however, it is easy to construct examples with 
at least three effort levels where the opposite is true, even with binary outcomes. (See MasColell et al., 1995 for one 
example; for another one, let e ∈ [0, 1], assume the agent’s utility is logw − 0.5e2, his reservation utility is 2, the high 
outcome is 14 and the low one is 4. Then second-best effort is 1 while the first-best level is about 0.9.) Since in our 
dynamic case continuation adds a concave term to the objective function, the resulting problem bears some resemblance 
with the static case with a risk-averse agent. Thus, it is intuitive to surmise that a similar ambiguity can arise.
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Relaxing either assumption present nontrivial challenges, as deviations by the agent can lead to 
divergence of the agent’s and principal’s beliefs. These seem to be interesting problems for future 
research.

Appendix A. Omitted proofs

A.1. Static first best: proof of Lemma 1

The principal solves max{0, γyh + (1 − γ )y�, maxe uh(e) − ψ(e)}. Notice that γyh + (1 −
γ )y� ≥ 0 if and only if γ ≥ γ̃ . At γ = γ̃ the principal is indifferent between exerting no effort 
and not exercising the option, and exerting no effort and exercising it. But at that value of γ
she strictly prefers to exert positive effort and exercise the option if the signal realization is 
high. To see this, notice that at γ = γ̃ the first-order condition becomes ψ ′(e) = −η′(e)(βh +
β�)y�yh/(yh −y�), which has a unique solution e > 0. Since the principal can always obtain zero 
profits by choosing e = 0, and her problem is strictly concave in effort, it must be the case that 
uh(e) − ψ(e) > 0 at the optimal level of effort when γ = γ̃ .

At γ = 1 (γ = 0) the principal’s payoff if she exerts no effort and buys (does not buy) is yh

(zero), which is strictly higher than the other two alternatives. Hence, at γ = 0 the principal does 
not exert effort and does not buy; at γ = γ̃ she exerts a positive level of effort and buys if the 
signal is high; and at γ = 1 she exerts no effort and buys.

We now show that maxe uh(e) − ψ(e) is strictly increasing in γ . By the Envelope Theorem, 
∂(maxe uh(e) −ψ(e))/∂γ = (α +βhη(e))yh − (α −β�η(e))y� > 0. Thus, maxe uh(e) −ψ(e) is 
strictly increasing in γ . It is also convex in γ , a well-known property of the value of information. 
Thus, it must single-cross zero at γ ∗ ∈ (0, γ̃ ) and γyh + (1 − γ )y� at γ̄ ∗ ∈ (γ̃ , 1), which proves 
the interval structure and effort/buying decisions stated in parts (i)–(iii) of the lemma. �
A.2. Optimal static contract: proof of Proposition 1

Let λ and μ be the Lagrange multipliers associated with constraints (2) and (3). The first-order 
conditions with respect to wh, w�, and e are

λ − 1 + π ′(e)
π(e)

μ ≤ 0, wh ≥ 0, (A.1)

λ − 1 − π ′(e)
1 − π(e)

μ ≤ 0, w� ≥ 0, (A.2)

u′
h(e) − ψ ′(e) + μ

(
π ′′(e)ψ

′(e)
π ′(e)

− ψ ′′(e)
)

≤ 0, e ≥ 0, (A.3)

all with complementary slackness, where we substituted constraint (3) into (A.3).
The following results will be used in the proof of the proposition:

Lemma 4. At the optimum, w� = 0 if γ > γ̂ , and wh = 0 if γ < γ̂ .

Proof. We only prove the first case (the other case is analogous). If γ > γ̂ , then wh ≥ w�, 
and w� ≥ 0 is the only relevant limited-liability constraint. Suppose w� > 0. Then wh > 0, and 
(A.1) and (A.2) hold with equalities, implying μ = 0 and λ = 1. Thus (2) and (3) yield w� =
ψ(e) −π(e)ψ ′(e)/π ′(e), where the right-hand side equals zero at e = 0 and is strictly decreasing 
in e. Hence w� ≤ 0, a contradiction. �
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Lemma 5. At the optimum, constraint (2) does not bind unless e = 0.

Proof. Let γ > γ̂ (the other case is analogous), and suppose that (2) binds and e > 0. Then (3)
and Lemma 4 yield wh = ψ ′(e)/π ′(e), and (2) becomes −ψ(e) + π(e)ψ ′(e)/π ′(e) = 0. But the 
left-hand side is positive if e > 0, a contradiction. �
Lemma 6. Suppose the principal buys only after the high signal realization. Then for any γ 
= γ̂ , 
the principal implements positive effort. Moreover, the effort goes to zero as γ approaches γ̂ .

Proof. Let γ < γ̂ (the other case is analogous). Using the first-order conditions, we obtain μ =
−(1 −π(e))/π ′(e), which strictly increases in γ . We can rewrite (A.3) as follows: γβhyh − (1 −
γ )β�y� − (ψ ′/η′)(e) +[(1 −π(e))/π ′(e)](ψ ′/η′)′(e) ≤ 0. Multiplying both sides by γβh − (1 −
γ )β�(< 0 as γ < γ̂ ) and rearranging terms, (γβh − (1 − γ )β�)[γβhyh − (1 − γ )β�y�] ≥ (γβh −
(1 − γ )β�)(ψ

′/η′)(e) − [(1 − π(e))/η′(e)](ψ ′/η′)′(e). Given our assumptions, the right-hand 
side is non-positive for any e and equals zero at e = 0. At the same time, the left-hand side 
is strictly negative for any γ < γ̂ . Thus if γ 
= γ̂ , then e = 0 cannot be a solution, and the 
principal must implement positive effort if she buys only after the high signal realization. But as 
γ approaches γ̂ , the left-hand side goes to 0 × (yh − y�)β�βh/(β� + βh) = 0, and hence effort 
must go to zero. �

We are now ready to prove the proposition:

Proof of Proposition 1. (i) Let γ > γ̂ (the other case is analogous). Since π ′(e) > 0, constraint 
(3) and Lemma 4 yield wh ≥ w� = 0, with strict inequality if e > 0.

(ii) If e = 0, then it is trivially lower than e∗ and strictly so if e∗ > 0. Suppose e > 0 and 
let γ > γ̂ (the other case is analogous). From Lemma 5, λ = 0 and hence μ = π(e)/π ′(e) > 0. 
Then (A.3) becomes u′

h(e) −ψ ′(e) = −(π(e)/π ′(e))(π ′′(e)ψ ′(e)/π ′(e) −ψ ′′(e)) > 0. Since e∗
solves u′

h(e
∗) − ψ ′(e∗) = 0, it follows that e < e∗.

(iii)-(a) At γ = 0 it is optimal for the principal not to hire the agent and not to exercise the 
option (the other two alternatives yield a negative payoff as y� < 0 and α > 0). By continuity, 
this holds in a neighborhood of γ = 0. Let γ be the largest value such that the principal does not 
hire the agent and does not exercise the option for all γ ∈ [0, γ ]. To show that γ > γ ∗, notice 
that at γ ∗, uh(e

∗) − ψ(e∗) = 0. Since 0 < e < e∗, uh(e) − ψ(e) < 0, thus proving that γ > γ ∗.
(iii)-(b) At γ = 1 it is optimal for the principal not to hire the agent and to exercise the 

option (it yields yh, strictly higher than the payoff of the other two alternatives as α < 1). By an 
analogous argument as in (iii)-(a) it follows that γ̄ < γ̄ ∗.

(iii)-(c) Suppose γ = γ̂ . Since the cost of implementing any positive level of effort is infinite, 
e = 0. Hence, if the principal exercises the option only if the signal realization is high, then her 
payoff is α(γ̂ yh + (1 − γ̂ )y�). Notice, however, that in this case the principal prefers (strictly 
unless γ̂ = γ̃ ) not to hire the agent, and to exercise the option if and only if γ̂ yh + (1 − γ̂ )y� ≥ 0
(i.e., γ = γ̂ ≥ γ̃ ).

We now show that the same holds in a neighborhood of γ̂ . Let γ < γ̂ (the other case is 
analogous). The principal’s problem in this case can be written as v(γ ) ≡ maxe∈[0,e∗] uh(e) +
(1 − π(e))ψ ′(e)/[η′(e)(γβh − (1 − γ )β�)], where by part (ii) we restrict attention to e ≤ e∗. 
Take ε > 0 small, and consider γ ∈ [0, γ̂ − ε]. The Theorem of the Maximum implies that v is 
continuous on [0, γ̂ − ε]. We will use this fact to show that there is a left neighborhood of γ̂ such 
that the principal chooses not to hire the agent.
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There are two cases to consider, γ̂ yh + (1 − γ̂ )y� < 0 (γ̂ < γ̃ ) and γ̂ yh + (1 − γ̂ )y� > 0
(γ̂ > γ̃ ). If γ̂ yh + (1 − γ̂ )y� < 0, then the principal’s profits at γ = γ̂ if she only buys after 
a high signal are α(γ̂ yh + (1 − γ̂ )y�) < 0. From Lemma 6, the optimal effort level under this 
policy goes to zero as γ goes to γ̂ . Thus, if ε is small enough, then uh(e) evaluated at the optimal 
effort level will be negative, and hence v(γ ) < 0. Thus, not hiring the agent and not buying 
dominates hiring him and buying only if the signal is high. Hence, there is a left neighborhood 
of γ̂ such that the principal prefers not to hire the agent. If γ̂ yh + (1 − γ̂ )y� > 0, then the 
principal’s profits at γ = γ̂ if she buys after a high signal are α(γ̂ yh + (1 − γ̂ )y�) > 0. But as 
α(γ̂ yh + (1 − γ̂ )y�) < γ̂ yh + (1 − γ̂ )y�, she strictly prefers to buy without hiring the agent. 
Proceeding as when γ̂ yh + (1 − γ̂ )y� < 0, one can show that if ε is small enough then v(γ ) <
γyh + (1 − γ )y�. Thus, there is a left neighborhood of γ̂ where the principal strictly prefers to 
buy without hiring the agent.

(iii)-(d) Suppose γ̂ 
= γ̃ . At γ = γ̃ the principal can obtain zero expected profits if she buys 
only after the high signal realization and implements e = 0, for it yields α(γyh + (1 −γ )y�) = 0. 
Also, by Lemma 6, the principal implements a positive level of effort for all γ 
= γ̂ when she 
buys only after the high signal realization. By revealed preference, she obtains positive expected 
profits by doing so. Thus, the optimal effort level at γ = γ̃ is positive. Since effort is continuously 
differentiable in γ at γ̃ , it follows that it is positive for values of γ in a neighborhood of γ̃ . �
A.3. Dynamic first best: proof of Lemma 2

We only sketch the proof since it is very similar to its static counterpart. The proofs of (i)–(iii)
are analogous to those of Lemma 1. The proof of the effort comparison in (iv) follows from the 
first-order condition in the text, as (γβh − (1 − γ )β�)δS

∗ is positive, negative, or zero, respec-
tively, if γ is greater, less, or equal to γ̂ . Finally, the proof of the threshold comparison in (iv) is 
analogous to those of parts (iii)-(a) and (iii)-(b) of Proposition 1. �
A.4. Optimal dynamic contract: proof of Proposition 2

Assuming that the principal can use lotteries, her problem can be rewritten as

U(V ) = max{ej ,wi1j ,wi0j ,Vij ,σij ,,Vj ,sj }i∈{h,�},j∈{1,2}

2∑
j=1

sj {π(ej )[σhj (Eh(ej ) − wh1j )

+ (1 − σhj )(−wh0j + δU(Vhj ))] + (1 − π(ej ))[σ�j (E�(ej ) − w�1j )

+ (1 − σ�j )(−w�0j + δU(V�j ))]}

s.t.
2∑

j=1

sjVj = V,

sj {−ψ(ej ) + π(ej )[σhjwh1j + (1 − σhj )(wh0j + δVhj )]
+ (1 − π(ej ))[σ�jw�1j + (1 − σ�j )(w�0j + δV�j )]} = Vj for j ∈ {1,2},

ψ ′(ej ) = π ′(ej )[σhjwh1j + (1 − σhj )(wh0j + δVjh) − σ�jw�1j

− (1 − σ�j )(w�0j + δV�j )] for j ∈ {1,2},
ej ≥ 0, wi1j ≥ 0, wi0j ≥ 0, Vij ≥ 0, σij ∈  for i ∈ {h, �}, j ∈ {1,2},
sj ∈ [0,1], s1 + s2 = 1.
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Due to the possibility of using lotteries, the value function is concave.
We will proceed by deriving properties of the optimal contract for the case in which the prin-

cipal does not use lotteries over contracts (payments), i.e., when V1 = V2 = V . In particular, we 
will take first-order conditions with respect to e ≡ e1 = e2, wik ≡ wik1 = wik2, Vi ≡ Vi1 = Vi2, 
σi ≡ σi1 = σi2, i ∈ {h, �}, k ∈ {0, 1}. At promised values V for which lotteries are optimal (i.e., 
V1 < V < V2 wlog, and sj ∈ (0, 1)), for each realization j ∈ {1, 2} the corresponding contract 
will have the derived properties given that the promised value to the agent is equal to Vj .

Let λ, μ, σiξik , and (1 − σi)δνi be the Lagrange multipliers on constraints (7), (8), wik ≥ 0, 
and Vi ≥ 0, i ∈ {h, �}, k ∈ {0, 1}, respectively. Denote by U ′+(V ), U ′−(V ), and ∂U(V ) the right 
derivative, left derivative, and superdifferential, respectively, of the concave function U at V . 
The first-order conditions with respect to wh1, wh0, w�1, and w�0 are:

σh[(λ − 1)π(e) + μπ ′(e) + ξh1] = 0, (A.4)

(1 − σh)[(λ − 1)π(e) + μπ ′(e) + ξh0] = 0, (A.5)

σ�[(λ − 1)(1 − π(e)) − μπ ′(e) + ξ�1] = 0, (A.6)

(1 − σ�)[(λ − 1)(1 − π(e)) − μπ ′(e) + ξ�0] = 0, (A.7)

and, after some straightforward substitution, the first-order condition with respect to e is

−ψ ′(e) + σhu
′
h(e) + σ�u

′
�(e) + π ′(e)δ[(1 − σh)(U(Vh) + Vh)) − (1 − σ�)(U(V�) + V�))]

+μ

(
π ′′(e)ψ

′(e)
π ′(e)

− ψ ′′(e)
)

≤ 0, e ≥ 0, (A.8)

all with complementary slackness. Using standard rules of superdifferential calculus,30 we obtain 
the following first-order conditions with respect to Vh and V�:

0 ∈ (1 − σh)[π(e)(∂U(Vh) + λ) + μπ ′(e) + νh], (A.9)

0 ∈ (1 − σ�)[(1 − π(e))(∂U(V�) + λ) − μπ ′(e) + ν�]. (A.10)

The envelope condition is31

−λ ∈ ∂U(V ). (A.11)

Finally, for completeness we will also derive the first-order condition with respect to σi , i ∈
{h, �}, which in the case when σi is interior, can be written as

π(e)[Ei − δU(Vi)]+
[
(λ − 1)π(e) + μπ ′(e) + ξi1

]
wi1 − [

λπ(e) + μπ ′(e) + νi

]
δVi = 0.

Using (A.4), the second term is zero. Hence the above equation becomes π(e)[Ei − δU(Vi)] −[
λπ(e) + μπ ′(e) + νi

]
δVi = 0. Using the first-order condition with respect to Vi , this can fur-

ther be rewritten as 0 ∈ Ei − δU(Vi) + δ∂U(Vi)Vi . Alternatively, in terms of the social surplus 
S(V ) = U(V ) + V , we have ∂U(Vi) = ∂S(Vi) − 1 and the first-order condition is

0 ∈ Ei − δS(Vi) + δ∂S(Vi)Vi . (A.12)

As we have already argued in the main text, the slope of the value function U is weakly greater 
than minus one. Formally, in terms of superdifferentials, we have:

30 See, for instance, Borwein and Lewis (2006, Chapter 6, p. 134).
31 See, for instance, Aubin (1979, Chapter 5, pp. 130–140).
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Lemma 7. For all V ≥ 0 and all x ∈ ∂U(V ), x ≥ −1. That is, the slope of the value function is 
always greater than minus one.

Proof. Summing up (A.4)–(A.7), obtain λ − 1 ≤ 0. If U is differentiable at V so that ∂U(V ) =
{U ′(V )}, then from (A.11), U ′(V ) = −λ ≥ −1. Since U is concave, it is differentiable ev-
erywhere but on a countable set. It follows that U ′+(V ) ≥ −1 for all values of V (which in 
turns implies the statement of the lemma since ∂U(V ) = [U ′+(V ), U ′−(V )] for any V > 0, and 
∂U(0) = {U ′+(0)} if U ′+(0) is finite). To see this, suppose that U ′+(V ′) < −1 for some V ′. Take 
V ′′ > V ′ such that U ′(V ′′) exists. By the previous argument, U ′+(V ′′) = U ′(V ′′) ≥ −1, which 
contradicts concavity of U , since a concave function has a decreasing right derivative. �

As explained in the main text, Lemma 7 allows us to set wh0 = w�0 = 0, and hence we denote 
wh ≡ wh1 and w� ≡ w�1.

We now turn to the proof of the proposition:

Proof of Proposition 2. (i)-(a) The incentive constraint (8) implies that σhwh + (1 − σh)δVh ≥
σ�w� + (1 − σ�)δV�, with strict inequality if e > 0.

Consider the case when e > 0. Suppose first that σh < 1, and that Vh ≤ V . Then from 
(A.4), (A.9), Lemma 7, and the fact that Vh ≤ V < V ∗, it follows that wh = 0. Then V >

(1 −σh)δVh > σ�w� +(1 −σ�)δV� and thus V = −ψ(e) +π(e)(1 −σh)δVh +(1 −π(e))[σ�w� +
(1 − σ�)δV�] < V , a contradiction. Hence, Vh > V .

Notice that μ ≥ 0. Indeed, Vh > V implies Vh > 0 so that νh = 0, and also U ′−(Vh) ≤ U ′+(V ). 
Suppose that μ < 0. Then from (A.9) and (A.11), −λ ∈ [∂U(Vh) + μπ ′(e)/π(e)] ∩ ∂U(V ) = ∅
since π ′(e) > 0, a contradiction. Furthermore, μ ≥ 0 also holds when σh = 1 (and e > 0). Indeed, 
in this case wh > σ�w� + (1 − σ�)δV� ≥ 0. Then (A.4), ξh1 = 0, λ ≤ 1 and π ′ > 0 imply μ ≥ 0. 
Moreover, the inequality is strict if V < V ∗ so that λ < 1.

Now suppose that σ� < 1 (and e > 0). We want to show that in this case V� < V . Suppose 
that V� ≥ V . If μ > 0, then using (A.10), (A.11), and ν� = 0 (since V� ≥ V > 0), we have a 
contradiction. As we have shown above, if σh = 1 and V < V ∗, then μ > 0 and hence V� < V

follows. The only potentially problematic case is when σh < 1 and μ = 0 (even though V < V ∗). 
We are going to rule out this possibility in what follows.

First notice that combining (A.9)–(A.11) we have 0 ∈ π(e)∂U(Vh) + (1 − π(e))∂U(V�) −
∂U(V ), where we used that νh = 0 since Vh > V > 0, and ν� = 0 since V� > V by the premise. 
Since U is concave, if both Vh and V� exceed V , then the slope of U must the same at V , 
Vh, and V�. In other words, the functions U(V ) and S(V ) = U(V ) + V must be linear on 
[V, max{V�, Vh}]. Let x denote the derivative of S on this interval. Suppose first that both σh

and σ� are interior. Using the first-order condition (A.12), we have Ei(e) − δS(Vi) + δxVi = 0, 
i ∈ {h, �}. Differentiating the last two terms with respect to V , we have −x + x = 0, im-
plying Eh(e) = E�(e) and hence the implemented effort must be zero. This contradicts the 
premise e > 0. Notice that this argument also goes through if σ� is interior, but σh = 0 as then 
Eh(e) − δS(Vh) + δxVh ≤ E�(e) − δS(V�) + δxV� = 0, so that Eh(e) ≤ E�(e), contradicting 
e > 0.

The only remaining case that we need to consider is σh = σ� = 0. We provide a detailed 
treatment of the principal’s problem in this case (that we refer to as U00) in Appendix A.6. When 
the slope of U is the same at Vh and V�, the first-order condition with respect to effort, the 
left-hand side of which is given by (A.20), is δπ ′(e)[U(Vh) − U(V�)] = 0 implying U(Vh) =
U(V�). If Vh = V�, then using the incentive constraint we reach a contradiction with e > 0. The 
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only way in which Vh and V� are not equal to each other and yet U(Vh) = U(V�) is if U has a 
zero slope on an interval containing Vh and V�.

Next we will show that if σh = σ� = 0, the function U cannot have a zero slope on an interval. 
Take V̂ ≡ sup{V |U ′(V ) = 0}. Rewriting equation (A.19) from Appendix A.6 evaluated at V =
V̂ , we have

πδU(Vh) + (1 − π)δU(Vl) ≤ δU(πVh + (1 − π)Vl) = δU

(
V̂ + ψ

δ

)
< δU

(
V̂

δ

)
,

implying that e = 0 and Vh = V� = V/δ are optimal. Then U(V̂ ) = δU(V̂ /δ) and 0 = U ′(V̂ ) =
U ′(V̂ /δ), where the first equality follows from the definition of V̂ . (If U is non-differentiable 
at those points, we instead have 0 ∈ ∂U(V̂ ) and 0 ∈ ∂U(V̂ /δ).) But since V̂ /δ > V̂ , the slope 
of U at V̂ /δ cannot be zero, as V̂ is the largest point with that property, a contradiction. This 
completes the proof of V� < V when e > 0 and σ� < 1.

Finally, the fact that setting wh = 0 dominates wh > 0 (strictly so if Vh < V ∗) whenever 
σh < 1 follows from (A.4), (A.9) and Lemma 7, and similarly for w�.

(i)-(b) The proof is similar to that of part (i)-(a). The incentive constraint (8) implies that 
σhwh + (1 − σh)δVh ≤ σ�w� + (1 − σ�)δV�, with strict inequality if e > 0.

Consider the case when e > 0. Suppose first that σ� < 1, and suppose that V� ≤ V . Then 
from (A.6), (A.10), Lemma 7, and the fact that V� ≤ V < V ∗, it follows that w� = 0. Then 
V > (1 − σ�)δV� > σhwh + (1 − σh)δVh and thus V = −ψ(e) + π(e)[σhwh + (1 − σh)δVh] +
(1 − π(e))(1 − σ�)δV� < V , a contradiction. Thus V� > V .

Notice that μ ≥ 0. Indeed, V� > V implies V� > 0 so that ν� = 0, and also U ′−(V�) ≤ U ′+(V ). 
Suppose that μ < 0. Then from (A.10) and (A.11), −λ ∈ [∂U(V�) − μπ ′(e)/(1 − π(e))] ∩
∂U(V ) = ∅ since π ′(e) < 0, a contradiction. Furthermore, μ ≥ 0 also holds when σ� = 1 (and 
e > 0). Indeed, in this case w� > σhwh + (1 −σh)δVh ≥ 0. Then (A.6), ξ�1 = 0, λ ≤ 1 and π ′ < 0
imply μ ≥ 0. Moreover, the inequality is strict if V < V ∗ so that λ < 1. The proof of Vh < V is 
analogous to the proof of V� < V in (i)-(a) part, and is omitted.

Since λ < 1, π ′ < 0, and μ ≥ 0, (A.4) implies that ξh1 > 0 and thus wh = 0 is optimal. 
(If σh = 0, then the choice of wh is irrelevant.)

(ii) From (7) and (8), we can express σhwh+(1 −σh)δVh =V +ψ(e) +(1 −π(e))ψ ′(e)/π ′(e)
and σ�w� + (1 −σ�)δV� = V +ψ(e) −π(e)ψ ′(e)/π ′(e). Non-negativity constraints wh ≥ 0 and 
Vh ≥ 0 imply σhwh + (1 − σh)δVh = V + ψ(e) + (1 − π(e))ψ ′(e)/π ′(e) ≥ 0. Similarly, w� ≥ 0
and V� ≥ 0 imply V + ψ(e) − π(e)ψ ′(e)/π ′(e) ≥ 0.

Suppose that γ > γ̂ . If V = 0, then the only value of e that satisfies V + [ψ(e) −
π(e)ψ ′(e)/π ′(e)] ≥ 0 is e = 0. To see this, notice that at e = 0, the term in the square brack-
ets vanishes, and its derivative with respect to e is negative (so this term is negative for all 
e > 0). Similarly, when γ < γ̂ and V = 0, the only value of e that satisfies V + [ψ(e) + (1 −
π(e))ψ ′(e)/π ′(e)] ≥ 0 is e = 0. Hence, if V = 0 then e = 0 and thus σhwh + (1 − σh)δVh =
σ�w� + (1 − σ�)δV� = 0.

(iii) Let V ≥ V ∗ > 0. Assume first that V > V ∗. Then U ′(V ) exists and equals −1. As we 
have shown above, μ ≥ 0. From (A.11), λ = 1. Let γ > γ̂ . Summing up (A.4) and (A.5) yields 
μπ ′(e) ≤ 0. Thus π ′ > 0 and μ ≥ 0 imply μ = 0. Similarly, suppose that γ < γ̂ . Summing up 
(A.6) and (A.7) yields −μπ ′(e) ≤ 0, so that π ′ < 0 and μ ≥ 0 imply μ = 0. Also, (A.4)–(A.7)
holding at equalities imply that the limited-liability constraints do not bind. Furthermore, from 
(A.9) and (A.10) with λ = −1 and μ = 0, Vh ≥ V ∗ > 0 and V� ≥ V ∗ > 0 are optimal choices, 
implying that νh = ν� = 0. Therefore the Lagrange multipliers on constraints (8) and (9) are 
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all zero, and the problem of the principal is effectively unconstrained (it is only subject to the 
promise-keeping constraint). Moreover, since Vh ≥ V ∗ and V� ≥ V ∗, the principal solves the 
unconstrained problem in all subsequent periods as well. Thus the first best is achieved.

Assume now that V = V ∗. At that point U ′(V ∗) need not exist and λ is not necessarily equal 
to −1. But the argument above shows that there exists a solution to the first-order conditions that 
achieves the first best. Since for any V profits are higher in the first-best case, the constructed 
solution is optimal. �
A.5. The  = {0, 1} case: proof of Claim 1

U01(V ) is the value of the following problem:

U01(V ) = max
wl1,Vh,e

π(e)δU(Vh) + ul(e) − (1 − π(e))wl1 (A.13)

s.t. − ψ(e) + π(e)δVh + (1 − π(e))wl1 = V,

ψ ′(e) = π ′(e) (δVh − wl1) ,

Vh ≥ 0, wl1 ≥ 0, e ≥ 0.

As usual, we denote by λ and μ the multipliers associated with the promise-keeping and the 
incentive constraints, respectively. We will show that U01 is dominated in the principal’s problem, 
and thus can be omitted without loss of generality. We proceed in two steps.

Step 1: Optimal effort is zero in problem (A.13). Consider the first-order condition with 
respect to effort in problem (A.13):

π ′(e)δU(Vh) + u′
l (e) + π ′(e)wl1 + μ

(
π ′′(e) (δVh − wl1) − ψ ′′(e)

) ≤ 0, (A.14)

e ≥ 0, with complementary slackness. Adding and subtracting π ′(e)δVh, using the incentive 
constraint to replace δVh − wl1 and the expression for the derivative (ψ ′/π ′)′ yield

π ′(e)δ (U(Vh) + Vh) + u′
l(e) − ψ ′(e) − μπ ′(e)

(
ψ ′

π ′

)′
(e) ≤ 0, (A.15)

e ≥ 0, with complementary slackness. If π ′ < 0, we immediately obtain that optimal effort is 
zero since all the terms are nonpositive. Suppose that π ′ > 0 (i.e., γβh − (1 − γ )βl > 0). Since 
the last two terms are nonpositive, to prove that optimal effort is zero it suffices that

π ′(e)δ (U(Vh) + Vh) + u′
l(e) ≤ 0,

which can be written as

η′(e)
[
(γβh − (1 − γ )βl)δ (U(Vh) + Vh) − (γβhyh − (1 − γ )βlyl)

] ≤ 0.

Let S∗ be the first-best surplus. Since U(Vh) + Vh ≤ S∗, it suffices to show that

γβhyh − (1 − γ )βlyl ≥ ((γβh − (1 − γ )βl) δS∗. (A.16)

Recall that the optimal strategy in the first-best case is stationary: the principal always chooses 
the same level of effort. Thus, the following is an upper bound for S∗:

S∗ ≤ max

{
0, γyh + (1 − γ )yl,

uh(e
∗∗)

π(e∗∗)

}
,

where e∗ is the optimal level of effort in the first-best case if the optimal constant policy happens 
to be buy if the signal realization is high and do not buy if it is low.
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To see that this is an upper bound for S∗, suppose the optimal first-best policy is to never buy. 
Then the payoff is 0. If instead it is to always buy, then the payoff is γyh + (1 − γ )yl . If it is to 
buy if high and not buy if low, then S∗ = (uh − ψ)/(1 − (1 − π)δ) < (uh − ψ)/π < uh/π .

Notice that if we replace S∗ in (A.16) by either 0 or γyh + (1 − γ )yl , it is clear that the 
inequality in (A.16) holds. It remains to show that if we replace S∗ by uh(e

∗∗)/π(e∗∗) then 
(A.16) holds as well. We will show something stronger by setting δ = 1 in (A.16), which (after 
rearranging terms) becomes

π(e∗∗) (γβhyh − (1 − γ )βlyl) − ((γβh − (1 − γ )βl) uh(e
∗∗) ≥ 0. (A.17)

The first term is (γ (α +βhη(e)) + (1 −γ )(α −βlη(e))) × (γβhyh − (1 − γ )βlyl), while the sec-
ond term equals (γβh − (1 − γ )βl) × (γ (α + βhη(e))yh + (1 − γ )(α − βlη(e))yl). Substituting 
in (A.17) yields, after some algebra,

γ (1 − γ )(yh − yl)(βh(α − βlη(e∗)) + βl(α + βhη(e∗∗))) > 0.

Thus, optimal effort is zero also in the π ′ > 0 case, proving that the optimal effort in problem 
(A.13) is zero.

Step 2: U01 is dominated by an alternative policy. Since the optimal effort is zero, the 
expected profit under U01 is U01(V ) = (1 − π(0)) (E0 − V ) + π(0)δU (V/δ). If E0 − V <

δU(V/δ), then U00(V )(≥ δU(V/δ)) > U01(V ). If E0 − V > δU(V/δ), then U11(V ) > U01(V )

(and if E0 − V = δU(V/δ) then U11(V ) = U01(V )). Thus U01 is dominated, strictly so except 
for the knife-edge case E0 − V = δU(V/δ), and thus can be deleted from the problem. �
A.6. The  = {0, 1} case: proof of Claim 2

U00(V ) is the value of the following problem:

U00(V ) = max
Vl,Vh,e

π(e)δU(Vh) + (1 − π(e))δU(Vl)

s.t. − ψ(e) + π(e)δVh + (1 − π(e))δVl = V,

ψ ′(e) = π ′(e)δ (Vh − Vl) ,

Vh ≥ 0, Vl ≥ 0, e ≥ 0.

Let V > 0, and notice that the objective function in the U00 problem can be written as follows 
after solving the promise-keeping and incentive constraints for Vh and Vl :

π(e)δU

⎛
⎝V + ψ(e) + (1 − π(e))

ψ ′(e)
π ′(e)

δ

⎞
⎠ + (1 − π(e))δU

⎛
⎝V + ψ(e) − π(e)

ψ ′(e)
π ′(e)

δ

⎞
⎠ .

(A.18)

If U is decreasing in V , then the following argument shows that e = 0 is optimal:

πδU(Vh) + (1 − π)δU(Vl) ≤ δU(πVh + (1 − π)Vl) = δU

(
V + ψ

δ

)
< δU

(
V

δ

)
,

(A.19)

where the first inequality follows from concavity, the equality from the functional forms of Vh

and Vl , and the last inequality from the premise that U is decreasing in V . Hence, choosing e = 0
dominates choosing a positive effort level. This argument also applies to the value of V for which 
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U has zero slope. As we have shown in the proof of part (i)-(a) of Proposition 2, U cannot have 
zero slope on an interval if U = U00.

Assume now that U ′(V ) > 0. The derivative of (A.18) with respect to e is

δπ ′�U + π(1 − π)

(
ψ ′

π ′

)′
�U ′, (A.20)

where �U = U(Vh) −U(Vl) and �U ′ = U ′(Vh) −U ′(Vl). Notice that the derivative with respect 
to e of the objective function is zero at e = 0. We are going to show that it is positive near e = 0, 
and hence the optimal effort must be positive for such V .

When e > 0, we can rewrite the above expression as

�U

⎡
⎢⎣δπ ′ + π(1 − π)

(
ψ ′
π ′

)′
�U ′

�U

⎤
⎥⎦ . (A.21)

Consider first π ′ > 0. Then �U > 0 since Vh > Vl and U ′(V ) > 0. Thus, it suffices to show that 
the term in square brackets converges to a positive value as e goes to zero. For by continuity it 
will be positive for small values of e, and the whole expression will be positive.

The first term converges to δπ ′(0) > 0, while the second term converges to

π(0)(1 − π(0)) lim
e→0+

(
ψ ′
π ′

)′
�U ′

�U
.

Since the limit in this expression is 0/0, we use L’Hopital’s rule to obtain

lim
e→0+

(
ψ ′
π ′

)′
�U ′

�U
= lim

e→0+

(
ψ ′

π ′

)′
lim

e→0+
�U ′

�U

= lim
e→0+

(
ψ ′

π ′

)′
lim

e→0+
(1 − π)U ′′(Vh) + πU ′′(Vl)

(1 − π)U ′(Vh) + πU ′(Vl)

= 0,

since the first term is zero while the second is U ′′(V )/U ′(V ) ≤ 0. Hence, the term in the square 
brackets in (A.21) is positive at e = 0 and by continuity for e > 0 small enough. Since the 
derivative of the objective function is zero at e = 0 but positive for any e in a right neighborhood 
of e = 0, the optimal level of effort must be positive.

Notice that the same goes through if instead π ′ < 0, for in this case �U < 0 for e small as 
Vl > Vh. This completes the proof of the claim. �
A.7. The  = {0, 1} case: additional results

Claim 4. Suppose the function U is strictly increasing for some V . Let V̂ be the largest value V
for which U has zero slope. Then U(V ) = U10(V ) for V ≥ V̂ .

Proof. Let V̂ = sup{V |U ′(V ) = 0}. Since U11 = γyh + (1 − γ )y� − V , U cannot be equal to 
U11 at V̂ . Suppose that U(V̂ ) = U00(V̂ ). Then following the same argument as in the proof of 
part (i)-(a) of Proposition 2, we conclude U must have zero slope at V̂ /δ > V̂ , a contradiction 
with the definition of V̂ . Hence U(V̂ ) = U10(V̂ ).
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Next we will show that U(V ) = U10(V ) for all V ≥ V̂ . We need to show that neither U11
nor U00 can intersect the U10 to the right of V̂ . It is clear that such an intersection cannot occur 
with U11 because U11 = γyh + (1 − γ )y� − V and the function U has an upward sloping part. 
(It is easy to see graphically that for the U to have an upward sloping part, an intersection 
with U11 can only occur to the left of V̂ .) We thus only need to rule out an intersection of U00
and U10. From part (iii) of Proposition 2 we know that U(V ) = U10(V ) for V ≥ V ∗ whenever 
V ∗ > 0. Therefore if an intersection occurs, U00 has to intersect U10 on (V̂ , V ∗) at least twice. 
To rule this out, it is enough to show that U00 cannot intersect U10 from below to the right 
of V̂ . Towards a contradiction, suppose that at V ′, U00 crosses U10 from below. Such a crossing 
would require that at V ′ the slope of U00 be bigger than the slope of the upper envelope, U .32

(And if the functions are not differentiable at V ′, the same holds for their right derivatives.) That 
is, U ′

00+(V ′) > U ′+(V ). However, this cannot occur for the following reason. As shown in the 
proof of Claim 2, when U is decreasing in V , the optimal effort in the U00 problem is zero, 
and Vh = V� = V/δ. Thus U ′

00+(V ) = U ′+(V/δ) ≤ U ′+(V ) for all V > V̂ , where the inequality 
follows from concavity of U . A contradiction. �
A.8. Use of lotteries: proof of Lemma 3

We will ignore lotteries over contracts since the argument goes through the same way 
with them. Suppose that e ≥ ẽ, which implies that Eh(e) ≥ δS∗ > δS(Vh) for all Vh < V ∗. 
We will show that σh = 1 at the optimum. Towards a contradiction, consider a solution with 
σh ∈ [0, 1), which implies that wh = 0. Then an increase in σh by dσh and wh by dwh such 
dwh = (δVh/σh)dσh, leaves the constraint set unaltered and increases the principal’s payoff by 
(Eh(e) − δS(Vh))dσh > 0, contradiction. Hence, σh = 1 at the optimum.

Suppose that e ∈ (0, ẽ), so that Eh(e) < δS∗. We will show that σh = 1 cannot be optimal. 
Towards a contradiction, consider a solution with σh = 1 and thus with wh > 0. Alter the contract 
by setting Vh = V ∗ and σh < 1 such that wh = (1 − σh)V

∗ to keep the constraint set unaffected. 
The principal’s expected profit increases by (1 −σh)(δS

∗ −Eh(e)), contradiction. Hence, σh = 1
is not optimal if e ∈ (0, ẽ), completing the proof of the first part of the lemma.

To prove the second assertion, assume that e ∈ (0, ẽ) and, towards a contradiction, that σh

arbitrarily close to one is optimal. Since γ > γ̂ , by part (i)-(a) of Proposition 2 σhwh + (1 −
σh)Vh > 0, and since wh = 0 is optimal, it follows that Vh > 0. If σh is arbitrarily close to one, 
then Vh is arbitrarily large and thus Vh ≥ V ∗. As a result, S(Vh) = S∗ and S′(Vh) = 0. Then 
the first-order condition (A.12) for i = h (which must hold since σh is interior by the premise) 
becomes Eh(e) − δS∗ = 0, contradicting e < ẽ. �
A.9. Use of lotteries: proof of Proposition 3

We will prove the proposition through a series of lemmata.33 We will proceed by setting 
σ� = 0, and at the end of the proof we will consider what happens if σ� > 0. From the premises, 

32 Indeed, the intersection between U00 and U10 creates a non-convexity; around the point of the intersection, lotteries 
over contracts would be used, and U will be a convex hull of U00 and U10 (to the right of V̂ ). It is easy to see graphically 
that the curve that intersects from below (U00) cannot have a larger slope than the convex hull.
33 To simplify an already long proof, throughout we are going to proceed as if U was continuously differentiable 
and use first-order conditions and derivatives. At the cost of more notation, one could do it with superdifferentials as 
in Proposition 2. Also, one can replace in each instance the continuity of the derivative by the continuity of the right 
derivative, which holds for a concave function such as U .
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notice that π ′(e) > 0 for all e (since γ > γ̂ ) and Eh(0) > 0 (since γ > γ̃ ). Moreover, Eh(0) >
δS(0). To see this, notice that if V = 0, then only e = 0 is feasible. Hence,

S(0) = π(0)[σhEh(0) + (1 − σh)δS(0)] + (1 − π(0))δS(0),

which rearranges to

S(0) = π(0)σhEh(0)

1 − δ(π(0)(1 − σh) + (1 − π(0)))
.

It is easy now to verify that Eh(0) > δS(0) if Eh(0) > 0.
Step 1: Candidate for an interior σh. Consider the following problem, which is obtained by 

setting σ� = 0 and solving the promise-keeping and incentive constraints for Vh and V� (given 
that wh = 0 when σh < 1):

max
e,σh

−ψ + π

(
σhEh + (1 − σh)δS

(
V + ψ + (1 − π)

ψ ′
π ′

δ(1 − σh)

))

+ (1 − π)δS

(
V + ψ − π

ψ ′
π ′

δ

)

s.t. V + ψ − π
ψ ′

π ′ ≥ 0, e ≥ 0, σh ∈ [0,1).

The first constraint is the non-negativity constraint V� ≥ 0, which is the relevant one given that 
π ′ > 0. At the optimum, either V +ψ −πψ ′/π ′ = 0 (the constraint binds) or V +ψ −πψ ′/π ′ >
0. We will consider each case separately.

Lemma 8. If V is sufficiently small, then there is a unique point (e0(V ), σh(V )), with e0(V ) > 0
and σh(V ) ∈ (0, 1), that solves the first-order conditions with V + ψ − π

ψ ′
π ′ = 0.

Proof. Since the constraint binds, e0(V ) is pinned down uniquely by it. Notice that (i) it 
increases in V , and (ii) it is differentiable with derivative e′

0(V ) = 1/[π(ψ ′/π ′)′]. Using 

V + ψ − π
ψ ′
π ′ = 0, the first-order condition for an interior σh given by (11) becomes

Eh(e0(V )) = δS

(
ψ ′(e0(V ))/π ′(e0(V ))

δ(1 − σh)

)

− δS′
(

ψ ′(e0(V ))/π ′(e0(V ))

δ(1 − σh)

)
ψ ′(e0(V ))/π ′(e0(V ))

δ(1 − σh)
.

This is one equation in one unknown, σh. Notice that the left-hand side is independent of σh. 
Consider the right-hand side. The derivative with respect to σh is strictly positive as long as the 
argument of S and S′ is less than V ∗, and becomes zero afterwards.

As σh goes to 1, the right-hand side converges to δS∗ (the second term vanishes for σh large 
enough, since S′ is zero once S = S∗), which is bigger than Eh(e0(V )) if V is small enough (i.e., 
e0(V ) < ẽ, where ẽ is defined in Lemma 3).

If σh = 0, then since Eh(0) > δS(0) and ψ ′/π ′ goes to zero as V goes to zero (and all this is 
continuous in V ), it follows that the left-hand side is strictly greater than the right-hand side for 
V sufficiently small. Thus σh = 0 cannot be a solution for V small enough.
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Since the left-hand side starts above and ends below the right-hand side, the Intermediate 
Value Theorem yields a unique interior value for σh(V ) that satisfies the first-order condition 
above, and thus (e0(V ), σh(V )) is the unique critical point in this case. �.

Lemma 9. If V is sufficiently small, then there is no solution to the first-order conditions with 
V + ψ − π(ψ ′/π ′) > 0.

Proof. Notice that any critical point (e, σh) in this case satisfies e ∈ [0, e0(V )) and the following 
equations, which are the first-order conditions with respect to e and σh:

−ψ ′ + σhu
′
h + π ′δ((1 − σh)S(Vh) − S(Vl)) + π(1 − π)

(
ψ ′

π ′

)′
(S′(Vh) − S′(Vl)) ≤ 0,

Eh − δS(Vh) + δS′(Vh)Vh = 0,

where Vh = (V + ψ + (1 − π)(ψ ′/π ′))/(δ(1 − σh)) and Vl = (V + ψ − π(ψ ′/π ′))/δ, and the 
argument e has been omitted to simplify the notation. We will show that when V is sufficiently 
small, these equations do not have a solution.

We first prove that there is a threshold σ̂h(V ) such that, for any pair (e, σh) that solves the 
first-order conditions, σh > σ̂h(V ). To see this, let σ̂h(V ) = σh that solves

Eh(0) = δS

(
V + a(e0(V ))

δ(1 − σh)

)
− δS′

(
V + a(e0(V ))

δ(1 − σh)

)(
V + a(e0(V ))

δ(1 − σh)

)
, (A.22)

where a = ψ +(1 −π)(ψ ′/π ′) to simplify the notation. Following the same steps as in Lemma 8, 
one can show that there is a unique σ̂ (V ), which is interior, that solves (A.22). Moreover, since 
both Eh(e) and δS(Vh(e)) − δS′(Vh(e))Vh(e) are strictly increasing in e, it follows that any
solution (e, σh) to the first-order conditions above must be such that σh > σ̂h(V ).

We next show that limV →0 σ̂h(V ) = 1. Towards a contradiction, suppose not, i.e., suppose 
σ̂h(V ) converges to a number strictly less than one. Since e0(V ) goes to zero as V goes to zero, 
it follows that (A.22) becomes Eh(0) = δS(0), but Eh(0) > δS(0), contradiction.

Finally, we show that for V sufficiently small, there is no solution to the first-order condition 
with respect to e. Let V be small enough so that any critical point has σh ≥ 1 −ε(V ), where ε(V )

goes to zero as V goes to zero, and insert this value into the first-order condition for e. Consider 
the left-hand side of the first-order condition with respect to e. It is easy to verify that it is larger 
than

−ψ ′(e0(V )) + (1 − ε(V ))u′
h(e0(V )) − π ′(0)δS

(
V

δ

)
− 1

4

(
ψ ′(e0(V )

π ′(e0(V ))

)
S′(0), (A.23)

which converges to u′
h(0) − π ′(0)δS(0) as V vanishes.

This expression is positive when Eh(0) > 0. To see this, recall that uh = πEh and thus u′
h =

π ′Eh + πE′
h. Hence u′

h − π ′δS(0) = π(0)E′
h(0) + π ′(0)(Eh(0) − δS(0)) > 0. By continuity, 

(A.23) is positive for V positive near zero. Hence, the first-order condition with respect to e
cannot be satisfied when V is sufficiently small. �
Lemma 10. If V is sufficiently small, then the critical point in Lemma 8, which consists of a 
positive e and an interior σh, solves the optimal long-term contracting problem.

Proof. If the problem has a solution, then it satisfies the Kuhn–Tucker conditions. From the 
lemmata above it follows that when V is sufficiently small, there is a unique critical point. So if 
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the problem has a solution it must be that point, which has e > 0 and σh ∈ (0, 1). Moreover, by 
choosing V small enough one can ensure that e < ẽ, and thus the omitted corner σh = 1 cannot 
be optimal by Lemma 3. �

Step 2: Verification of interior equilibrium σh. We must show that σh ∈ (0, 1) can indeed be 
optimal for small values of V , since lotteries over contracts with σh ∈ {0, 1} could make purchase 
lotteries redundant.

To this end, we will first analyze the (right) derivatives of U00 and U10 at V = 0. Recall that 
U00 is the value of not buying today irrespectively of the signal realization, and U10 is the value 
of buying today if and only if the signal realization is high, which solves

U10(V ) = max
wh,V�,e

π(e) (Eh(e) − wh) + (1 − π(e))δU(V�)

s.t. − ψ(e) + π(e)wh + (1 − π(e))V� = V,

ψ ′(e) = π ′(e) (wh − δV�) ,

V� ≥ 0, wh ≥ 0, e ≥ 0.

Solving for wh and V� from the constraints and using the premise that γ > γ̂ , we obtain

U10(V ) = max
e≥0

π(e)

(
Eh(e) −

(
V + ψ(e) + (1 − π(e))

ψ ′(e)
π ′(e)

))

+(1 − π(e))δU

⎛
⎝V + ψ(e) − π(e)

ψ ′(e)
π ′(e)

δ

⎞
⎠

subject to V + ψ(e) − π(e)ψ ′(e)/π ′(e) ≥ 0 (i.e., V� ≥ 0.)

Lemma 11. The (right) derivative of U10 diverges to infinity as V goes to zero, while the deriva-
tive of U00 is positive and finite at V = 0.

Proof. In the U10 problem, it is easy to show that when V is sufficiently small, V� = 0, and thus 
the optimal effort level is e0(V ). Hence, U10(V ) is

U10(V ) = π(e0(V ))

(
Eh(e0(V )) − ψ ′(e0(V ))

π ′(e0(V ))

)
+ (1 − π(e0(V ))δU (0) .

Differentiating and using e′
0(V ) = (π(ψ ′/π ′))−1 and u′

h = π ′Eh + πE′
h, we obtain

U ′
10(V ) =

[
π ′

(
Eh − ψ ′

π ′ − δU (0)

)
+ π

(
E′

h −
(

ψ ′

π ′

)′)]
e′

0(V )

= u′
h − ψ ′ − π ′δU(0)

π ′
(

ψ ′
π ′

)′ − 1.

The limit of the numerator of the right-hand side as V goes to zero is u′
h(0) −π ′(0)δU(0), which 

is positive since Eh(0) > 0. The limit of the denominator is zero. Hence

U ′
10(0) = lim+ U ′

10(V ) = +∞.

V →0



90 H. Chade, N. Kovrijnykh / Journal of Economic Theory 162 (2016) 55–92
Regarding U00, if at the optimum the constraint (V� ≥ 0) binds (which implies that effort is 
positive and thus this can only happen if there is an upward sloping portion of U ) then

U00(V ) = π(e0(V ))δU

⎛
⎝V + ψ(e0(V )) + (1 − π(e0(V )))

ψ ′(e0(V )
π ′(e0(V ))

δ

⎞
⎠

+ (1 − π(e0(V )))δU (0) .

Differentiating this expression and using the derivative of e0(V ), we obtain

U ′
00(V ) = π ′δ(U(Vh) − U(0))e′

0(V ) + πU ′(Vh)

(
1 + (1 − π)

(
ψ ′

π ′

)′
e′

0(V )

)

= δ
π ′

π

U(Vh) − U(0)(
ψ ′
π ′

)′ + U ′(Vh).

As V goes to zero, the last term on the right-hand side converges to U ′(0). Regarding the first 
term, notice that

0 ≤ δ
π ′

π

U(Vh) − U(0)(
ψ ′
π ′

)′ ≤ δ
π ′

π

U ′(0)
(

ψ ′
π ′

)
(

ψ ′
π ′

)′ = δ
γβh − (1 − γ )β�

π
U ′(0)

ψ ′(
ψ ′
η′

)′ ,

where the first inequality follows from U being upward sloping in the region considered, the 
second one from concavity of U , and e = e0(V ) in each argument. Now, U ′(0) is finite since 
Eh(0) > 0.34 Hence, the last term converges to a 0/0 expression as V vanishes, since ψ ′(0) =
(ψ ′/η′)′(0) = 0. Applying L’Hopital’s rule, we obtain that this term vanishes given our premise 
(ψ ′/η′)′′(0) > 0 and the fact that (ψ ′/η′)′(0) = 0 implies ψ ′′(0) = 0. Hence, U ′

00(0) = U ′(0) <
∞.

If the constraint (V� ≥ 0) does not bind, then it follows from the Envelope Theorem that

U ′
00(V ) = πU ′(Vh) + (1 − π)U ′(Vl).

As V goes to zero, so does e (since the feasible set of values of e shrinks to {0}). Hence Vh and 
Vl go to zero and thus U ′

00(0) = U ′(0) < ∞. �
The following lemma now completes the proof of Proposition 3.

Lemma 12. When V > 0 is sufficiently small, σh ∈ (0, 1) at the optimal contract.

Proof. Let ẽ solve Eh(ẽ) = δS∗, and let Ṽ = inf{V |e(V ) ≥ ẽ} > 0. Since we are assuming 
that γ > γ̃ , it follows that U11(0) > U10(0) > U00(0). So consider the lottery over contracts 
that randomizes between the contract that involves always buying, zero effort, and V = 0 with 
probability p; and buying only if high, positive effort, and a positive V with probability 1 − p. 
(Graphically, this is the line segment that starts at the intercept of U11 and is tangent to U10 at V .) 

34 This follows since U(V ) = U11(V ) = γyh + (1 − γ )y� − V at V = 0 under our premises, and thus U ′(0) is equal to 
the finite slope of a convex combination of U11(0) with U00(V ) or U10(V ) for some V > 0 if, contrary to what we are 
trying to prove, the purchase lotteries are dominated by the contract ones.
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Notice that this value of V > 0 need not be smaller than Ṽ ; moreover, it is not clear at this point 
that U00 is below this line segment for all values in the interval between 0 and V .

Let γ → γ̃ +, so that U11(0) converges to U10(0). Since U ′
10(0) = ∞ and U ′

00(0) < ∞, it 
follows that for values of γ sufficiently close to γ̂ both V < Ṽ and U00 is below the line segment 
joining U11(0) and U10(V ).

Since V < Ṽ , it follows that σh = 1 cannot be optimal. So it is either zero, or interior. We 
want to rule out the former possibility. Recall that we have set σ� = 0. Since U00 is below U10
at V , σ� = σh = 0 cannot optimal. Furthermore, σ� = 1 and σh = 0 cannot be optimal either by 
Claim 1. Hence, there are three possibilities left: (i) σ� = 0 and σh ∈ (0, 1); (ii) σ� ∈ (0, 1) and 
σh ∈ (0, 1); or (iii) σ� ∈ (0, 1) and σh = 0.

If (i) dominates (ii) and (iii) we are obviously done since we have shown that this al-
ternative is better than a lottery over contracts with deterministic purchase decisions. If (ii)
dominates (i) and (iii) we are also done, since by transitivity this alternative will dominate 
a lottery over payments, as it dominates (i). And we claim that we can rule out the case 
in which (iii) dominates (i) and (ii) by making V small enough. To see this, notice that 
U11(0) = γyh + (1 − γ )y� > U00(0) = δ(γyh + (1 − γ )y�) and U11(0) = γyh + (1 − γ )y� >

U01(0) = [1 − π(0) + π(0)δ](γyh + (1 − γ )y�). As a result, and using obvious notation, 
U11(0) > U0σ�

(0) = [(1 −π(0))(σ� + (1 −σ�)δ) +π(0)δ](γyh + (1 −γ )y�) for all σ� ∈ [0, 1].35

Since the inequalities are strict, the same is true for V > 0 sufficiently small. Hence, case (iii)
will be dominated by U11 for V small enough, and thus by either cases (i) or (ii). This completes 
the proof. �
A.10. Use of lotteries: additional results

Claim 5. If γ ≤ γ̃ (so that Eh(0) = E�(0) ≤ 0), then σ� = 0 for all V .

Proof. Suppose that γ ≤ γ̃ so that Eh(0) = E�(0) ≤ 0. Using part (ii) of Proposition 2, at V = 0
σh = σ� = 0 are optimal, and the payoff to the principal is U(0) = δU(0) implying that U(0) = 0. 
Then −S(V ) + S′(V )V = 0 at V = 0.36 Moreover, −S(V ) + S′(V )V is decreasing in V since S
is concave, so it is negative for all V . Hence the left-hand side of (11) for i = � is always strictly 
negative, implying that σ� = 0. �
Claim 6. If γ < γ̂ and e > 0, then σh ≥ σ�. Moreover, at the optimum either σ� = σh = 0, or 
0 = σ� < σh, or σ� < σh = 1.

Proof. Recall that when σi is interior, the corresponding first-order condition is Ei(e) −
δ[S(Vi) − S′

i (Vi)Vi] = 0 (assuming for simplicity that S is differentiable at Vi ). Notice that 
S(Vi) −S′

i (Vi)Vi is increasing in Vi since S is concave, and strictly increasing if Vi < V ∗. More-
over, Eh(e) > E�(e) for any e > 0, and under γ < γ̂ we have that V� > Vh (see Proposition 2). 
Hence E�(e) − δ[S(V�) − S′

�(V�)V�] < Eh(e) − δ[S(Vh) − S′
h(Vh)Vh], so both σh and σ� cannot 

be interior, and σ� ≤ σh. Since σh = σ� = 1 is inconsistent with e > 0, we are left with three 
possible cases: (1) σ� = σh = 0, (2) 0 = σ� < σh, and (3) σ� < σh = 1. �
35 This is the value of purchasing with probability σ� after the low signal realization when V = 0.
36 Notice that limV →0 S′(V )V must be finite and equal to zero, for otherwise the first-order condition (11) for i = �

that should hold with a weak inequality at V = 0 would be violated.
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A.11. Optimal effort: proof of Proposition 4

Towards a contradiction, suppose that e(V ) > e∗∗. Recall that e∗∗ > ẽ. Thus by Lemma 3, 
σh = 1. Recall that the first-order condition with respect to effort in the first-best case is f ∗ ≡
−ψ ′(e) + u′

h(e) − π ′(e)δS∗ = 0. Using σh = 1, the corresponding first-order condition in the 
second-best case can be written as f ≡ −ψ ′(e) + u′

h(e) + σ�u
′
�(e) − π ′(e)(1 − σ�)δS(V�) +

μ(η′′(e)ψ ′(e)/η′(e) − ψ ′′(e)) = 0. Then f = f ∗ + σ�u
′
�(e) + π ′(e)δ[S∗ − (1 − σ�)S(V�)] +

μ(η′′(e)ψ ′(e)/η′(e) − ψ ′′(e)). Since η′′ψ ′/η′ − ψ ′′ < 0, μ ≥ 0, u′
� < 0, S∗ ≥ S(V�) ≥ (1 −

σ�)S(V�), and π ′ < 0 when γ < γ̂ , we have f ≤ f ∗, and hence e ≤ e∗∗, with strict inequalities 
unless μ = 0. �
Appendix. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.12.003.
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