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Omitted Proofs

LEMMA 5: Function V̂ is concave with slope between −1 and 0.

PROOF: The fact that V̂ (w) is decreasing in w follows from the fact that
an increase in w is costly for the lender. When w increases by one unit, the
lender can always increase the borrower’s consumption levels by one unit for
all s, in which case his value decreases by one unit. He can potentially do
better by changing investment and/or continuation values. In addition, if w
is such that the promise-keeping constraint does not bind, then V̂ ′(w) = 0.
Concavity is a consequence of the possibility of lotteries. �

PROOF OF CLAIM 1: (i) Autarkic strategies are for the lender to offer
zero investment and zero consumption in each period, and for the borrower
to reject any offer. Clearly, if π = 0, this is a subgame perfect equilibrium
because if the lender expects the borrower never to repay, his best response
is never to invest, and vice versa.

(ii) Let π > 0, and suppose to the contrary that autarky is an equilibrium.
Then it is an equilibrium that delivers the lowest punishment on the lender.
Thus the corresponding solution to problem (6)−(10) satisfies V̂ (w) = −w,
and investment is zero in each period. To get a contradiction, I show that
whenever w is large enough, the lender can generate a payoff strictly above
−w.

Since V̂ (w) = −w, constraint (7) binds for all w, and the lowest payoff
to the borrower is ŵ0 = 0. Substituting from (7) into the objective function
and using the fact that (9) always binds (see the proof of Proposition 1), the
maximization problem of the lender can be written as maxK,{cs,w1s}E[−K +

f(K, s) + βπV̂ (w1s) + β(1− π)V̂ (0)] + min{βEπw1s − w, 0} subject to cs +
βπw1s ≥ f(K, s) for all s. Since π > 0, the borrower’s participation con-
straints can be satisfied by setting w1s large enough. Moreover, if w is large
enough, min{Eβπw1s − w, 0} = Eβπw1s − w. Using V̂ (w) + w = 0 for all
w, the lender’s problem becomes maxK −K +Ef(K, s)−w. The solution is
clearlyK∗. The lender’s payoff is−K∗+Ef(K∗, s)−w = (1−β)S∗−w > −w,
a contradiction.

Next, I will show that v = V̂ (0) > 0. Suppose that V̂ (0) = 0, and also
suppose that the promise-keeping constraint does not bind. Then it is optimal
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to set cs = 0 for all s. Expressing w1s from (8), the lender’s maximization
problem becomes maxK E[−K + f(K, s) + βπV̂ (max{ŵ, [f(K, s)/β − (1 −
π)ŵ]/π})+β(1−π)V̂ (0)]. Since V̂ (0) = 0, w+ V̂ (w) > 0 for w large enough,
and V̂ is concave, it follows that E[f(K, s) +βπV̂ (max{ŵ, [f(K, s)/β− (1−
π)ŵ]/π}) is strictly increasing in K. Since limK→0 fK(K, s) = +∞ for all
s > 0, the payoff to the lender is strictly increasing in K for small enough
K, and the optimal choice of investment, denoted by K̃, is strictly positive.
Moreover, the lender can obtain a payoff of zero by choosing K = 0. Thus
V̂ (0) > 0.

It remains to show that at w = 0 the promise-keeping constraint is indeed
slack. Using (8), the left-hand side of the promise-keeping constraint is at
least Ef(K̃, s), which strictly exceeds 0. �

PROOF OF CLAIM 3: The proof is similar to the proof of existence in
Kovrijnykh and Szentes (2007) (Proposition 4 in Appendix B).

First, notice that 0 ≤ V̂ (w) + w ≤ S∗ < ∞. Define Ŝ(w) = V̂ (w) + w.
From Lemma 5, Ŝ is concave, with slope between 0 and 1.

I will define the set of possible candidates for Ŝ. Consider the following
set of functions: Γ = {Ŝg|Ŝg ∈ C[0,∞), Ŝg ≥ 0, Ŝg is concave and bounded,

and for δ > 0, [Ŝg(w + δ)− Ŝg(w)]/δ ∈ [0, 1]}. Observe that Γ with the sup
norm is a convex compact set.

Next, I will define a fixed-point operator on Γ. For all Ŝg ∈ Γ, let

V̂g(w) = Ŝg(w) − w for all w. Define the operator T̂ : Γ → Γ by T̂ Ŝg =

cav(max{T̂0Ŝg, 0}), where cav denotes the concavification of a function, and

the operator T̂0 is defined as follows:

T̂0Ŝg(w) = w + max
K,{cs,w0s,w1s}s∈S

−K + E[f(K, s)− cs + β(πV̂g(w1s)

+(1− π)V̂g(w0s))]

s.t. E[cs + β(πw1s + (1− π)w0s)] ≥ w,

cs + β(πw1s + (1− π)w0s) ≥ f(K, s) for all s ∈ S,
V̂g(w0s) ≥ V̂g(0) for all s ∈ S,
cs ≥ 0, w1s ≥ 0, w0s ≥ 0 for all s ∈ S.

To see that T̂ indeed maps into Γ, note that the fact that T̂ Ŝg is continuous
with slope between zero and one follows from Lemma 5. The concavity of
T̂ Ŝg and T̂ Ŝg ≥ 0 follow immediately from construction. Next, I will show
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that (a) the operator T̂ has a fixed point, and (b) there is a bijection between
fixed points and punishment equilibria.

(a): I apply Schauder’s fixed-point theorem to the operator T̂ . Notice
that Γ is a convex compact set. The operator T̂ is continuous with respect
to the sup norm because the operator T̂0 is continuous.

(b): If Ŝg = Ŝ, where V̂ (w) = Ŝ(w) − w is the value to the lender in a

punishment equilibrium, then Ŝg is obviously a fixed point of T̂ . If Ŝg is a

fixed point of T̂ , then it follows from the proof of Proposition 9.2 in Stokey
and Lucas (1989) that V̂ (w) = Ŝg(w) − w corresponds to a punishment
equilibrium. �

PROOF OF LEMMA 1: Let π < 1, and suppose that π increases marginally.
Let λ̂ and psµ̂s denote the Lagrange multipliers on constraints (7) and (8), re-
spectively. The current period’s change in the value to the lender in response
to the increase in π is ∆(w) = βE[V̂ (ŵ1s) − V̂ (ŵ0s) + (λ̂ + µ̂s)(ŵ1s − ŵ0s)],
where ŵ1s and ŵ0s denote the optimal choices of continuation values. (From
the proof of Proposition 1, ŵ0s = ŵ and V̂ (ŵ0s) = V̂ (0).) Notice that
ŵ1s maximizes βE[V̂ (ŵ1s) + (λ̂ + µ̂s)ŵ1s]. Thus ∆(w) = βE[V̂ (ŵ1s) + (λ̂ +
µ̂s)ŵ1s] − βE[V̂ (ŵ0s) + (λ̂ + µ̂s)ŵ0s)] ≥ 0, with strict inequality if (9) binds
so that ŵ1s is different from ŵ0s. I want to show that when w is high enough
so that the borrower consumes, ∆(w) > 0.

Let ∂V̂ (w) denote the superdifferential of the function V̂ at w. The
first-order condition with respect to cs, with complementary slackness, is
−1 + λ̂ + µ̂s ≤ 0, cs ≥ 0. The first-order condition with respect to w1s

(ignoring constraints wxs ≥ 0, which, as I will show, indeed never bind) is
−(λ̂ + µ̂s) ∈ ∂V̂ (ŵ1s), and the Envelope condition is −λ̂ ∈ ∂V̂ (w). The
first-order condition with respect to K is 1 ∈ EfK(K̂, s)(1− µ̂s).

First, notice that since V̂ is concave, it is optimal for the lender to set
w1s equal to w whenever possible. If setting w1s = w violates (8), then
w1s > w. (The proof is analogous to the proof of Lemma 3.) Thus w1s ≥ w
for all s, so indeed w1s ≥ 0 never binds. Also, consumption in state s is
zero unless −1 ∈ ∂V̂ (ŵ1s). Moreover, notice that if V̂ ′(w) = −1, then
since ŵ1s ≥ w, the concavity of V̂ implies V̂ ′(ŵ1s) = −1 for all s. Since
V̂ ′(ŵ1s) = −λ̂−µ̂s = −1 = V̂ ′(w) = −λ̂, it follows that µ̂s = 0 for all s. Then
from the first-order condition with respect to K, the optimal investment,
denoted by K̂, equals K∗. In addition, at w such that V̂ ′(w) = −1, ∆(w) =
βE[V̂ (ŵ1s) + ŵ1s]− β[V̂ (0) + ŵ]. Since V̂ is concave, ∆(w) > 0 unless V̂ is
linear with slope −1 for w ≥ ŵ. It remains to show that indeed V̂ cannot
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have slope −1 for w ≥ ŵ.
There are two scenarios that one needs to rule out: (a) ŵ = 0 and V̂ is

linear with slope −1 for w ≥ 0, and (b) ŵ > 0, and V̂ is constant on [0, ŵ]
and is linear with slope −1 for w > ŵ.

Consider scenario (a) first. If π > 0, then V̂ (0) > 0 by Claim 1. Since
V̂ ′(w) = −1 for all w ≥ 0, the above reasoning implies that K̂ = K∗ for
all w ≥ 0. From (8) with w0s = 0, obtain w1s ≥ [f(K∗, s) − cs]/(βπ).
Substituting this into the objective function and using V̂ (w) = V̂ (0) − w,
obtain V̂ (0) ≤ −K∗+E[f(K∗, s)− cs] +βπ(V̂ (0)−E[f(K∗, s)− cs]/(βπ)) +
β(1 − π)V̂ (0). Rearranging terms, this expression becomes (1 − β)V̂ (0) ≤
−K∗ < 0, a contradiction with V̂ (0) > 0.

Now consider scenario (b). In this case again K̂ = K∗ for w ≥ ŵ.
Moreover, for w ∈ [0, ŵ), the value to the lender is the same as at w = ŵ,
but the promise-keeping constraint (7) holds with strict inequality. Then at
w = 0, V̂ (0) = maxK −K+Ef(K, s) +βπ(V̂ (0)−E[max{ŵ, f(K, s)/(βπ)−
ŵ(1 − π)/π}]) + β(1 − π)V̂ (0). For some s, w1s = max{ŵ, f(K, s)/(βπ) −
ŵ(1 − π)/π} = f(K, s)/(βπ) − ŵ(1 − π)/π > ŵ (otherwise the borrower
never consumes). Then it is optimal for the lender to invest K < K∗, and
earn profits strictly higher than V̂ (ŵ). Thus V̂ (0) > V̂ (ŵ), contradicting the
properties of scenario (b).

I have shown that the per-period change in the lender’s value is ∆(w) ≥ 0,
with strict inequality (at least) when w is such that the borrower consumes
in that period at least in some states. The total change in the lender’s value
is the expected present discounted value of changes in the current and all
future periods. Since starting from any promised value, the borrower must
consume in the future with probability one (for otherwise she would find it
profitable to deviate), the total change is strictly positive. �

PROOF OF LEMMA 3: From (A5) and (A6), so long as γ = 0, w1s = w0s =
ws for all s. While this is the case, suppose s is such that choosing ws = w
satisfies (3), so that µs = 0. Then from (A5) and (A7), this choice is optimal.
For s such that choosing ws = w would violate (3), a higher level of ws must
be chosen. For w high enough, setting w0s = w1s for all s would violate (4),
and hence w0s = wv. Notice that since w ≥ 0, given this optimal choice of
continuation values, constraints wxs ≥ 0 indeed do not bind. �

PROOF OF CLAIM 4: The proof is by induction. First notice that T (V ∗) ≤
V ∗. In addition, suppose that V2 ≤ V1. Then the constraint set in T (V1) is
at least as large as that in T (V2), and therefore T (V2) ≤ T (V1). Applying
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this argument to V2 = T n (V ∗) and V1 = T n−1 (V ∗), obtain the induction
step: if T n (V ∗) ≤ T n−1 (V ∗) then T n+1 (V ∗) ≤ T n (V ∗). Hence T n (V ∗)
is a decreasing sequence and therefore must converge point wise to some
limit V̄ . By continuity, V̄ is a fixed point of T . Moreover, by the above
induction argument, V ≤ V ∗ implies T n (V ) ≤ T n (V ∗) for all n ≥ 1 and
hence V = limn→∞ T

n (V ) ≤ limn→∞ T
n (V ∗) = V̄ . By the definition of V as

the constrained Pareto frontier, V ≥ V̄ . Thus V̄ = V . �
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